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Abstract

This thesis deals with two challenging computational imaging problems: spectral
and phase imaging. Standard image sensors heavily down-sample spectral infor-
mation via color filtering and limited spectral sensitivity and are sensitive only to
light intensity, which may result in the loss of valuable information related to ob-
ject composition or the direction of incoming light rays. Consequently, vision and
sensing applications such as spectral imaging, interferometry, and 3D imaging are
hindered. The aim of this work is to provide ways to computationally recover this
information from compressed, multiplexed, and decimated measurements captured
using ad-hoc devices. To this end, two learning-based approaches are proposed.

The first approach tackles the problem of hyper-spectral image reconstruction
from compressed sensor measurements captured using a CTIS prototype, which
is a snapshot imaging device that captures three-dimensional hyper-spectral data
cubes as two-dimensional multiplexed signals. Computational post-processing is
then needed to recover the latent data cube. However, iterative algorithms typically
used to solve this task require large computational resources as the CTIS system
matrix is quite wide and can become intractable with a higher spatial resolution of
the input measurement. Furthermore, these approaches are very sensitive to the
assumed systems and noise models. In addition, the poor spatial resolution of the
0" diffraction order image limits the usability of CTIS in favor of other snapshot
spectrometers, even though it enables higher spectral resolution. A novel approach,
dubbed Hyper-Spectral and Super-Resolution Network (HSRN) and its subsequent
variant HSRN+ are proposed in this regard to recover high-quality hyper-spectral
images leveraging complementary spatio-spectral information scattered across the
sensor image, furthermore a reconstruction capability beyond the spatial resolution
limit of the 0" diffraction order is achieved with quasi real-time performance.

The second approach focuses on Quantitative Phase Imaging (QPI) and recovers
a high-quality complex light field from in-line holographic measurements, the phase
of which can be used to reveal the contrast in transparent and extremely thin micro-
scopic specimens. Despite the limitation of image sensors, which detect only light
intensity, phase information can still be recorded within a two-dimensional interfer-
ence pattern between two distinct light waves. This work introduces HoloADMM,
an interpretable, learning-based approach designed for in-line holographic image
reconstruction. HoloADMM enhances the phase imaging capability with spatial im-
age super-resolution, offering a versatile framework that accommodates multiple il-
lumination wavelengths and supports extensive refocusing ranges with up to 10 ym
precision. HoloADMM can achieve a substantial improvement in reconstruction
quality over existing methods and demonstrates effective adaptation to real holo-
graphic data captured by a custom-made DIHM prototype.
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Sommario

Questa tesi tratta due importanti problemi di imaging computazionale: imaging
multispettrale e phase imaging. I sensori di immagini standard acquisiscono solo
una piccola parte dell’informazione spettrali a causa del filtraggio del colore e della
limitata sensibilita spettrale, e sono sensibili solo all’intensita luminosa, il che puo
comportare la perdita di informazioni preziose relative alla composizione della su-
perficie dell’oggetto o alla direzione dei raggi di luce in arrivo. Di conseguenza,
applicazioni di visione e rilevamento come 1'imaging spettrale, l'interferometria e
I'imaging 3D sono difficoltose. L’obiettivo di questo lavoro e fornire modi per recu-
perare computazionalmente queste informazioni da misurazioni compresse, multi-
plexate e decimate ottenute tramite dispositivi ad-hoc. A tal fine, vengono proposti
due approcci basati su machine learning.

Il primo approccio affronta il problema della ricostruzione di immagini iperspet-
trali a partire da misurazioni ottenute utilizzando un prototipo CTIS, un disposi-
tivo di imaging istantaneo che cattura dati iperspettrali tridimensionali come seg-
nali multiplexati bidimensionali. E necessario un post-processing computazionale
per recuperare l'informazione iperspettrale. Tuttavia, gli algoritmi iterativi tipi-
camente utilizzati per risolvere questo problema richiedono grandi risorse com-
putazionali poiché la matrice del sistema CTIS e piuttosto ampia e pud diventare
intrattabile con una risoluzione spaziale della misurazione in ingresso piu alta. In-
oltre, questi approcci sono molto sensibili ai modelli di sistema e di rumore assunti.
Oltretutto, la scarsa risoluzione spaziale dell'immagine dell’ordine di diffrazione 0"
limita 1"utilizzabilita del CTIS a favore di altri spettrometri istantanei, sebbene con-
senta una risoluzione spettrale pit elevata. Gli approcci proposti (Hyper-Spectral
and Super-Resolution Network (HSRN) e la sua variante successiva HSRN+) sono
capaci di recuperare immagini iperspettrali di alta qualita sfruttando le informazioni
spazio-spettrali complementari sparse nell'immagine del sensore. Cosi facendo e
stata raggiunta una capacita di ricostruzione oltre il limite di risoluzione spaziale
dell’ordine di diffrazione 0" operando quasi in tempo reale.

Il secondo approccio si concentra sull Quantitative Phase Imaging (QPI) e re-
cupera campi di luce complessi di alta qualita da misurazioni olografiche in-line,
la cui fase puo essere utilizzata per rilevare il contrasto in campioni microscopici
trasparenti ed estremamente sottili. Nonostante la limitazione dei sensori di im-
magini, che rilevano solo l'intensita luminosa, le informazioni di fase possono co-
mungque essere registrate all'interno di un pattern di interferenza bidimensionale tra
due onde luminose distinte. Questo lavoro introduce HoloADMM, un approccio
basato su deep learning interpretabile, progettato per la ricostruzione di immagini
olografiche in-line. HoloADMM migliora la capacita di imaging di fase con immag-
ini ad alta risoluzione spaziale, offrendo un framework versatile che puo gestire
svariate lunghezze d’onda di illuminazione e supporta ampi intervalli di rifocaliz-
zazione con precisione fino a 10 yum. HoloADMM e in grado di raggiungere un



miglioramento sostanziale nella qualita della ricostruzione rispetto ai metodi es-
istenti ed ha dimostrato un’efficace adattabilita ai dati olografici reali ottenuti tramite

un prototipo DIHM appositamente realizzato.
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Chapter 1

Introduction

In this introductory chapter, basic concepts related to light, propagation, and imag-
ing conditions will be introduced. Afterward, the digital imaging pipeline will be
discussed, which encompasses different camera modules and processes involved in
generating a two-dimensional image. Vision-based sensing applications and the in-
verse ill-posed nature of recovering meaningful sensory data from 2D measurements
will be discussed with the two primary use cases investigated in this work. Finally,
the thesis contributions will be presented in the last section.

1.1 Background and Motivation

In recent years, the field of imaging has undergone significant advancements, par-
ticularly in the development of spectral imaging and holographic phase imaging
techniques. These advancements have broadened the scope of vision-based sensing
applications, which now play a critical role in various scientific, medical, and indus-
trial domains. The primary motivation behind this thesis is to address the challenges
associated with these advanced imaging techniques and to contribute to their further
development.

Spectral imaging allows for the capture of information across different wave-
lengths, providing detailed insights into the material properties and chemical com-
position of objects. Holographic phase imaging, on the other hand, enables the mea-
surement of optical phase shifts, which are crucial for understanding the 3D struc-

ture and refractive index variations in transparent or semi-transparent samples.

1.2 Light Representation

The representation of light varies depending on the type of optical simulation and
the specific phenomena being investigated. Light can be described using three main
frameworks: ray optics, wave optics, and vectorial light fields.

Ray optics, or geometric optics, is the simplest model, treating light as rays that
travel in straight lines and change direction according to the laws of reflection and
refraction. This approach is particularly useful for studying large-scale optical sys-
tems, such as lenses and mirrors, where wave effects like diffraction and interference
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FIGURE 1.1: Detailed schematic of image formation: interactions between object
reflectance, illumination, camera spectral response, and image sensor processing.

are negligible. Ray optics will be used later on to describe the imaging condition and
optical aberrations in most imaging systems.

However, when dealing with phenomena such as interference, diffraction, or
polarization, wave optics becomes necessary. In this framework, light is described
as an electromagnetic wave characterized by its wavelength, amplitude, and phase.
Wave optics is essential for understanding how light behaves when it encounters
obstacles or apertures on the scale of its wavelength.

In the vectorial interpretation, a light field is characterized by electric and mag-
netic field vectors that oscillate perpendicularly to each other and to the direction
of propagation. This vector nature is crucial in understanding polarization effects,
birefringence, and the behavior of light in anisotropic media.

In the second part of this thesis, the scalar diffraction theory or the wave nature
of light will be considered, a simplified model that approximates the vector nature
of light by treating it as a scalar field. This approach is often sufficient for analyz-
ing situations where the polarization effects of light are either negligible or uniform
across the field. Here, the light field, denoted by x, is described by its amplitude A
and phase ®:

x = Ael® (1.1)

The intensity I of the light, which is what image sensors measure, is proportional to
the squared amplitude of the field, I = |x|> = A2. The phase ® encodes informa-
tion about the wavefronts of the light, determining the direction and nature of its
propagation.

Standard image sensors, such as CCD or CMOS sensors, are only sensitive to the
intensity of light because they cannot directly detect the rapidly oscillating electric
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field of light, which typically oscillates at frequencies around 10'°> Hz. As a result,
these sensors cannot capture the phase information of the light field, which is crucial
for applications like holography and phase-contrast imaging.

To access phase information, additional techniques such as interferometry are re-
quired, where the phase differences between light waves are converted into intensity
variations that sensors can detect.

1.3 Image Formation

To fully grasp how digital images are formed, it’s important to understand the im-
age formation model in standard digital cameras and how light interacts with cam-
era optics. This includes the process of capturing and digitizing incoming light via
an image sensor. Figure 1.1 depicts a conceptual model of the imaging process,
illustrating how various components contribute to the final image captured by a
camera. The key elements in this model include the object being imaged, the light
source that illuminates the object, and the camera’s image sensor. Light sources
can be classified based on their spectral properties. Broadband sources, like sun-
light or halogen lamps, emit light across a wide range of wavelengths. In contrast,
monochromatic sources, such as lasers, emit light at a single wavelength, while
quasi-monochromatic sources, like LEDs, emit light within a narrow wavelength
band. The light emitted from the source interacts with the object, resulting in a re-
flected light that carries information about the object’s reflectance and spectral prop-
erties. This reflected light is then captured by the camera through a lens, which can
introduce a point spread function (PSF) that contributes to the blurring of the image.
Additionally, the camera’s spectral response and the color filter array (CFA) affect
the final image by modifying the spectrum and resolution of the captured light. The
figure aims to visualize the interplay between these factors—object reflectance, illu-
mination spectrum, camera spectral response, and the blur and sampling effects—
and to highlight how they collectively influence the image formation process and
produce a degraded image of the scene. The aim of this work is to recover lost infor-
mation such as light spectrum and phase and restore the perceptual quality of the
image by performing denoising and spatial super-resolution thus counteracting the
effects of the PSF and the discrete and finite pixel grid sampling.

The following sub-sections will go more in details and guide the reader through
the camera optics using: (i) a simplified model of ray optics, which is useful for un-
derstanding imaging conditions, spot size, and optical aberrations, (ii) scalar wave
theory of light and Fourier optics to explore the diffraction-limited PSF, which de-
fines the physical lateral resolution limit of any imaging device. Then, the sensor
chip is presented along with its role in capturing incoming photons, digitization and
subsequent noise introduction. Finally, the image signal processing unit is described
with its different components that contribute to the final image data to be used or
displayed later on.
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f Image plane

Zo Zj

FIGURE 1.2: A thin lens model where light rays are focused by the lens. An object
is in focus if the thin lens equation is satisfied. If not, its image would be blurred
and spread out across the circle of confusion C.

1.3.1 Thin Lens Model and Optical Aberrations

This simplistic model is widely used in ray optics to derive light transport equations
under paraxial regime. A basic thin lens model is shown in figure 1.2. Light rays
reflected by an object in the scene reach the lens L with a focal length f;. The primary
function of the lens is to focus light rays coming from an object at a distance z, in
front of the lens into an image at a distance z; behind it. The thin lens equation is
satisfied when all rays coming from point-like sources are focused into a point in the
image plane otherwise known also as the imaging condition:
1,1 1 (1.2)
Zo  zi  fi
Moving the object away from the focus plane or equivalently moving the image
plane, such that the thin lens equation is no longer satisfied, produces a blurry image
of said object, known as the circle of confusion. A point is considered in focus if its
circle of confusion (C) is smaller than the pixel size of the image sensor. The distance
margin within which this condition holds is defined as the Depth Of Field (DOF).
In reality, the thin lens model is almost always violated which means that light
rays coming from a single source cannot all converge to the same exact point in the
image plane. For instance, the paraxial approximation presumed before does not
always hold, as light rays might have large enough angle with the optical axis, those
rays do not satisfy the thin lens equation. In real manufactured lenses, surfaces
do not perfectly match the designed profile. Furthermore, lenses are dispersive el-
ements as they can only be designed for a single wavelength, all other light rays
with different colors will be dispersed differently resulting in chromatic aberrations.
Nevertheless, a real camera has a much more complex and sophisticated lens system
that minimizes multiple types of optical aberrations. These aberrations are inherent
properties of the camera lens and affect how light is focused on the image plane.
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They can be mathematically modeled using Seidel’s third order correction to the
paraxial approximation for an off-axis point situated at x = h and z = 0 (refer to

figure 1.2):

Ax' = Biricos(¢) + Bar*h(2 + cos(2¢)) + (3Bs + By)rhicos(¢) + Bsh® (1.3)
Az = Byr¥sin(¢) + Bar*hsin(2¢) + (Bs + By)rh*sin(¢) (1.4)

Where Ax" and Az’ are the deviation from the unique convergence points in the im-
age plane x" and 2/, (r,¢) are point coordinates at the lens plane, B; , i = {1,2,3,4,5}
is the strength coefficient of different types of aberrations. Plots shown in figure 1.3
are obtained using code from [SK24].

¢ Spherical aberrations (B;): Shown in the first row of figure 1.3 caused by the
different focus planes of rays coming from the edge of lens compared to those
coming from the inner regions of the lens. Notice that this kind of aberration
depends on r® and ¢, the spot diagram on the image plane is a circle with
radius propositional to r°.

¢ Coma (By): Shown in the second row of figure 1.3 caused by imperfections in
the lens, and it affects primarily off-axis object points (i # 0) where the imaged
point sources have a tail-like artifacts, the severity of this aberration increases
as h increases.

¢ Astigmatism (B3): Shown in the third row of figure 1.3 caused by the misfocus
between perpendicular rays, e.g., rays with ¢ = 0 or ¢ = pi and those with
¢ = £7. Leading to an image that appears stretched or distorted along certain
axes in addition to blur.

¢ Field curvature (By): Shown in the fourth row of figure 1.3 caused by different
focus planes of point across the field of view where if all points were to be in
focus, the image plane should be curved.

* Distortion (Bs): Shown in the last row of figure 1.3 it is observable when linear
edges exhibit some degree of curvature in the image. The amount of distortion
increases non-linearly as a function of the object’s distance from the principal
point. Notice that it only depends on 4 so all points will be in focus but their
position changes by a factor of h°.

1.3.2 PSF and Resolution Limit

The simplistic assumptions described in the previous section cannot explain the
physical limitation of a real imaging system where point sources of light cannot
be focused into points in the image plane due to diffraction limit even when us-
ing perfect optics. Therefore, it is necessary to accurately model light behavior and

the imaging system using Fourier optics and scalar/wave nature of light instead of
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FIGURE 1.3: Optical aberrations caused by the lens, resulting in different types

of image misfocus [SK24]. From the first to last rows: (1) spherical aberration,

(2) coma, (3) astigmatism, (4) field curvature, and (5) distortion. h is the off-axis
vertical displacement.
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FIGURE 1.4: Generalized imaging system characterized by its entrance and exit
pupils.

the geometric ray presentation. To this end, the lens system is viewed as a black
box where one would be interested in modeling light waves just at the entrance and
the exist planes of such system, known otherwise as the entrance and exit pupils of
the system. The reader is encouraged to refer to [GooO5] for more details. The new
system schematics is shown in figure 1.4.

Such model takes into account a diffraction-limited imaging system. For in-
stance, light from an ideal point source object passing through a circular aperture
would be diffracted at the edges of the aperture, resulting in a diffraction pattern
spot on the image plane formed through constructive and destructive interference,
known as an Airy disk. This is the Point Spread Function (PSF) of the imaging sys-
tem, defined as the system’s response to an ideal point-like source of light. The PSF
size limits the size of resolvable object features in the image plane.

Here, a generalized lens system is modeled by entrance and exit pupil planes,
where the propagating field is defined when entering and exiting the lens system.
As a first simple hypothesis, the object is considered to be illuminated by a coherent
and monochromatic light source (e.g., a spatially coherent laser beam). Under this
assumption, the image formation model is linear in complex amplitude.

Let h(u,v) be the amplitude transfer function of the lens system. The linear
forward model can be written as:

Ui(,0) = [ heuw,0;8,1)Uo (&, )dcy (15)

Where U; is the image amplitude, and U, is the amplitude distribution emitted
by the object. I (1, v) can also be seen as the amplitude distribution of a point source
of light at the image coordinates (u,v), which is the coherent PSF of the imaging



8 Chapter 1. Introduction

system. Let A(x,y) be a circular aperture with radius r defined as:

1 if /x2+y><r
Ax,y) = ' (1.6)
0 otherwise

For a point source in focus, h.(u, v) is expressed as:

he(u,v) = % //A(x,y)e_j%i[(M_Mg)xJ’(v_MW)y}dxdy (1.7)
1

Where C is a constant factor, A is the wavelength of the incident light, and M =
—(zi/z,) is the system’s magnification.

In a second, more generalized hypothesis, the illumination is assumed to be in-
coherent and poly-chromatic light source, which is often the case when capturing
images in uncontrolled environments, such as in natural scenes. Thus, it is neces-
sary to generalize the previous expressions to account for an incoherent and poly-
chromatic illumination source. Instead of the forward model being linear in complex
amplitude, it is now considered linear in intensity distribution. Therefore, the image

intensity distribution I;(1, v) can be expressed as:

1i(,0) = x [ [1he(u = M0~ M) PLo(&/ M,/ M), dz,dy (18)

Where « is a real constant, I; and I, are the intensity distributions of the captured
image and the ideal object image, respectively.

As seen from Eq. 1.8, the resulting image is the product of the convolution be-
tween the ideal object image and the imaging system’s incoherent PSE, which is by
definition the square modulus of its coherent counterpart at the in-focus plane:

PSF(u,v) = |he(u — M v — My)|? (1.9)

Now that the incoherent PSF of the imaging system is defined, it is possible to
define its Optical Transfer Function (OTF) as follows:

PSF(u,v)e /2 (fetfy?) dy, do
OTF(fx,fy): ff T d
[ PSF(u,v),du,dv (1.10)

= F{PSF(u,v)}

Eq. 1.10 shows that the OTF of an imaging system with incoherent illumination
is the Fourier transform of its normalized point spread function PSF over the spatial
frequencies f, and f,.

The Rayleigh criterion is often used to define the spatial resolution limit in
diffraction-limited systems. It states that two point sources are considered resolv-
able when the central maximum of one PSF coincides with the first minimum of the

adjacent PSF. The distance at which this occurs depends on the wavelength of light
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FIGURE 1.5: PSF Calibration setup of a spectrometer system (MACTIS) using an
optical fiber connected to a monochromator (right), calibrated PSF image of the
system integrated spectral-wise (left).

and the numerical aperture (NA) of the imaging system, and it directly relates to
the spot size of the diffracted PSF.

0=122% A x % (1.11)

Where « is the radius of the first dark ring of the Airy disk pattern, A is the wavelength
of light, f and D are respectively the focal length and aperture diameter. Two point
sources are spatially resolved only when the distance between the centers of their
Airy disk is equal to a. A lens larger aperture suffer less from diffraction artifacts

leading to a small PSF size (small ) which interns leads to higher spatial resolution.

1.3.3 PSF Calibration

Calibrating the PSF of an imaging system is crucial for characterizing and optimizing
the system’s performance. The PSF describes how a point source of light is spread by
the system, capturing the effects of optical aberrations, diffraction, and other factors
that influence image quality. The calibration process begins with selecting an appro-
priate point source of light. This could be a pinhole illuminated by a laser or an LED
with a very small aperture. In this work, optical fibers were used in combination
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with monochromatic to mimic point sources of light. The point source is then posi-
tioned at a known position relative to the system. Once properly aligned, multiple
images of the point source are captured under various conditions, such as different
wavelengths. The calibration setup used in this work to calibrate a spectrometer
device (further details about the system will be discussed in Chapter 2) is depicted
in figure 1.5 on the right along with calibration data shown on the left where the
wavelength-dependent PSF of the system is shown as smeared spots in the sensor
image. Such calibration method enable accurate PSF recovery but at the same time
it requires precise alignment of the different optical components of the calibration
setup.

In the absence of dedicated optics for system calibration, one can still infer the
PSF across the field of view of the system using blind deconvolution techniques us-
ing dedicated PSF calibration targets [JSK08; BSA10; Mos+15], the recovery process
in this case is purely computational, where the blur kernel is inferred from the cam-

era measurement using some prior knowledge about the shape of such kernel.

1.3.4 Digital Camera

A standard digital image formation pipeline is shown in figure 1.6. After passing
through the lens system and aperture, photons are captured by the sensor pixel grid
formed by small light sensitive areas known as photodiodes. Photons hit the pho-
todiode’s surface exciting electrons within the material, generating a small electric
current proportional to the number of incident photons. The stronger the incom-
ing light, the more electron-hole pairs are generated, and thus, the larger the cur-
rent. This current is then captured and measured as a voltage drop across the diode,
which corresponds to the brightness level at that particular pixel. Note that pixels
in a CMOS sensor convert generated charges into voltage locally at the pixel level
and then forward it to the amplification stage. CMOS sensors are now widely used
in modern consumer cameras. The above mentioned process converts the incoming
light into an electrical signal, which can then be further processed to form a digital
image.

The sensor exposure time controls how many photons are allowed to hit the sen-
sor at capture time and it is controlled by the shutter, situated usually just in front
of the sensor. Shutter speed can be set according to the scene dynamics—capturing
fast-moving objects requires a higher shutter speed; otherwise, the image would
contain motion blur. Note, however, that shutter speed, aperture diameter, and sen-
sor sensitivity (ISO) are generally combined to achieve the desired output.

A schematic of a single pixel in a CMOS sensor is presented in figure 1.7. Since
photodetectors are only sensitive to the light intensity hitting them (i.e., the number
of received photons), they cannot differentiate between different wavelengths and
hence cannot produce color information about the imaged scene. To overcome this
issue, an array of color filters is placed on top of the bare sensor, and each photodi-
ode receives only photons of a single wavelength (i.e., those that can pass through
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FIGURE 1.6: Modern digital camera’s image formation process.

the color filter). A well-known pattern of such Color Filter Arrays (CFA) is the Bayer
pattern [Bay76], with a Red-Green-Green-Blue color combination. Half of the grid
pixels are green, and the other half is divided equally between red and blue pixels.
This is because human eyes are more sensitive to spatial differences in luminance
rather than chrominance, with the former being mostly determined by the green
color. The process of reconstructing the full RGB channels from the output of the
CFA is known as image demosaicing. Worth noting that for many other vision ap-
plications, a monochrome sensor is used with no color filters, such sensors are useful
for spectral sensing applications which is the main focus of the first part of the thesis.

\ Micro lens
‘ Color filter

Transistor " ) Photodiode

Pixels

Circuitry

FIGURE 1.7: A single pixel in a CMOS sensor. The photodiode along with the pixel
transistor lay below a color filter and a micro lens.

The sensor chip also contains other components, such as micro lenses, which
collect light and focus it on the active sensor area of the sensor pixel. Additionally, a
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signal amplification and read-out circuit is embedded within the sensor to produce
a raw signal.

Before reaching the Analog-to-Digital Converter (ADC), the raw analog signal
is amplified by sense amplifiers whose gain can be manually set by choosing the
appropriate ISO setting. Otherwise, it can be adjusted automatically by the camera.
Note that higher gain leads to the amplification not just of the image signal but
also of the noise levels, which can be noticed when capturing photos in low light
conditions, resulting in noisy images. The final component in the sensor chip is the
ADC, which quantizes the raw analog input signal and outputs a digital signal with
a bit resolution of 8, 10, or 16 bits for the RAW output.

The Image Signal Processor (ISP) unit is responsible for raw image post-
processing, including demosaicing, white balancing, enhancement of the signal’s
dynamic range, and image compression to produce the final image in lossy JPEG or
lossless PNG formats. However, in this work, mainly raw image data will be used
to avoid information loss and distortion that can be caused by those post-processing
steps.

1.3.5 Camera Noise Model

Noise in digital cameras refers to the random variations in brightness or color in-
formation that can degrade the quality of an image, often appearing as graininess
or color speckles. Noise arises from several sources, primarily due to the inherent
physical and electronic processes in the sensor and the associated circuitry. The two
most common types of noise are **shot noise** and **thermal (or dark) noise**.

Shot noise is due to the quantum nature of light; since photons arrive at the
sensor in a random manner, the number of photons captured by each pixel fluctu-
ates, introducing variability in the measured signal. Shot noise follows a Poisson
distribution, where the noise oyt is proportional to the square root of the signal S,
represented mathematically as ogpof = V/S.

Thermal noise, known also as dark shot noise, is generated by the random mo-
tion of electrons within the sensor and its circuitry in the absence of light. This noise
is proportional to the square root of the sensor temperature and is usually described
by the equation Cihermal = VkT, where k is the Boltzmann constant and T is the
absolute temperature of the sensor.

Another prominent type of noise is readout noise, which occurs during the pro-
cess of converting the analog signal from the photodiode to a digital signal by the
ADC. This noise is often modeled as Gaussian and is independent of the signal.

The overall noise in an image is a combination of these factors and

is often expressed as the total noise 0Oio, Which can be approximated as

Ciotal = \/ Uszhot +‘7t2herma1 +Ur2ead0ut. This total noise impacts the signal-to-noise
ratio (SNR), which is a critical factor in determining image quality. High SNR
indicates that the signal (actual image data) is much stronger than the noise,
resulting in clearer and more detailed images, while low SNR leads to noisy, less
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Noise Contributions in Digital Cameras as a Function of Exposure
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FIGURE 1.8: Contribution of different noise sources.

clear images. The plot shown in figure 1.8 demonstrates the contributions of the
different noise sources discussed above with an arbitrary signal and noise variances,
read and dark shot noises remain constant as the exposure increases because they
are signal-independent, shot noise instead increases with the exposure time and
becomes predominant in high-exposure images. Notice that since the contribution
of dark shot noise is small it can be neglected in the simulated noise model, in real
imaging setups, such noise can be effectively suppressed by subtracting a dark
image taken under the same conditions from the actual measurement. In fact, in
later sections, the simulated noise model used in the various approaches proposed
in this thesis is that of [Foi+08] which considers only read and shot noise sources.

1.4 Inverse Problems in Vision

Inverse problem solving in computational imaging involves reconstructing an un-
known image x from indirect measurements y. Mathematically, the problem can be
expressed as:

y=Ax+e (1.12)

Where A represents the forward model, which describes how the image x is
transformed into the measurements y and it can be linear as well as non-linear op-
erator, and € denotes the noise or error in the measurements. The goal of inverse
problem solving is to estimate x given y and A.

In the case of image denoising, the forward operator A is the identity matrix I
where the expression in Eq. 1.12 is reduced to y = x + €, and in the case of image
deblurring, the forward model matrix is a Toeplitz block diagonal matrix. In more

complex cases like image super resolution, the forward model can be decomposed
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into a convolution operator K with a blur kernel and a down-sampling operator
D, where A = DK. Because the problem of recovering x is often ill-posed due to
the small number of known parameters compared to the unknown ones, directly
inverting A , to find x via inverse filtering is not straightforward due to the pres-
ence of measurement noise and when the matrix A is singular, which is the case in
most imaging applications. If the noise is known a priori, then solving a Maximum
Likelihood (ML) problem can recover x:

XM = arg max p(y|x) = arg min —log(p(y|x)) (1.13)

Where p(y|x) is the likelihood of observing y given a true x. The ML solver finds
the parameter values that make the observed data most likely. However, it does not
use prior information about the parameters and it only relies on the observed data
to estimate the parameters. This makes ML purely data-driven, making it sensitive
to noise as it would try to fit the noise pattern.

On the other hand, a Maximum A Posteriori Estimation (MAP) is used to tackle
the shortcomings of ML by incorporating prior knowledge on the distribution of x.
This can be particularly useful when the data is scarce or noisy, as the prior can help

guide the estimation process. A MAP estimation problem can be formulated as:

Xmap = argmax p(x|y) = arg max p(y|x)p(x) = arg min —log(p(y[x)) —log(p(x))

i " " (1.14)
Where in this case p(x) is the prior distribution on x. In the case of additive Gaus-
sian noise, the MAP framework can be reformulated as a regularized least squares

minimization problem:
- 1 5
XMAP :argmmEHy—Atz + ¥ (x) (1.15)
X

Where ¥ (x) is the negative log prior of x which acts as a regularization term. For
example, if the prior is a Gaussian distribution centered around zero, it penalizes
large parameter values, preventing overfitting. This regularization effect is similar
to adding a penalty term in regularized regression models (e.g., L2 regularization).

In this work, in order to solve the above mentioned MAP estimation problem,
learning-based approaches are used. More particularly, neural networks ©® with
weights () in higher dimensional space are optimized in a supervised manner so
that Xp14ap = @ (y) where the network in this case is already trained. During train-
ing, the weights are minimized using a gradient descent based optimizer and are
trained using a couple {y,x} of input measurements and target ground truth data
drawn from a data distribution:

Q = argmin £(Oq(y), x) (1.16)
Q
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Where L(-) is an objective (or loss) function to be minimized, e.g., it can be the mean
squared difference between x and Oq(y).

1.5 Thesis Contributions

This thesis makes several novel contributions in the field of computational image
sensing. In particular, different learning-based approaches are proposed to tackle
the image reconstruction problem in snapshot spectral imaging using a tomographic

based imaging device and in phase imaging using lens free microscopic devices:

¢ Chapter 2 is dedicated to spectral imaging where HSRN [MGZ22] and HSRN+
[MGZ24] are introduced which are the outcome of an improved spectral imag-
ing techniques: Wherein novel methods are devised to enhance the resolution
and accuracy of spectral images with application to material characterization
[Ama+23a].

¢ Chapter 3 introduces HoloADMM [Mel+24], an approach to tackle image
reconstruction quality in microscopic phase imaging which employs holo-
graphic techniques to recover light phase distribution using wave interference
and generate image contrast of otherwise thin and transparent microscopic

specimens.

¢ Chapter 4 concludes the work carried out in this thesis and present some future
research directions concerning both spectral and phase imaging.

These contributions are expected to advance the state of the art in imaging sci-
ence, providing new tools and methodologies for researchers and practitioners in
the field.
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Chapter 2

Snapshot Spectral Imaging

2.1 Introduction

Hyper-Spectral Imaging (HSI) techniques enable the capture of multiple spectral
bands, extending beyond the standard RGB channels captured by typical imaging
devices, as shown in figure 2.1. The spectral data volume can be conceptualized as
a three-dimensional cube, with the first two dimensions representing spatial data
and the third dimension representing spectral data, containing numerous spectral
bands. Throughout this thesis, this data volume will be referred to as a (hyper)-
spectral cube, object cube, or (hyper)-spectral images. Rich spectral information is
essential for various vision-based sensing applications, including material character-
ization in sorting and recycling [BLH23], medical image analysis [Kha+18], remote
sensing and monitoring [Tek+13], and object detection and tracking [EA+22].

The increasing demand for hyper-spectral data has led to the development
of various spectroscopic systems, which can be categorized into two main types:
scanning-based devices and snapshot devices: 1) Scanning-based devices include
Whiskbroom spectrometers that can capture a full spectrum pixel-wise or of a
handful of pixels at a time, Pushbroom spectrometers that can capture the spectrum
of roughly a single line of pixels in each exposure using a slit aperture. Alternatively
a tunable color filter (e.g., VariSpec™) can be used to capture a full two-dimensional
image for a single wavelength at a time. The aforementioned techniques have to

Natural scenes Standard RGB camera

Color filtering Demosaicing

Continuous spectrum Discrete under-sampled spectrum

FIGURE 2.1: Continuous light spectrum reflected from the scene is under-sampled
through color filtering in RGB sensors. Butterfly image courtesy of [Mon+15].
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balance between spectral/spatial resolution and the acquisition time; whenever
finer resolution in the spatial or spectral domains is needed, scanning time has to
be increased. 2) Snapshot devices require a single exposure to capture sparse and
compressed measurements of the latent object cube wherein spatial and spectral
information are multiplexed via some kind of aperture coding and dispersion
optical elements as in Coded Aperture Snapshot Spectral Imager (CASSI) systems
[Geh+07], Diffractive Optical Elements (DOEs) [Cou60] or eventually using color
filter arrays on top of the image sensor [Bil01], similar to a Bayer color filter array
but with more color filters than the standard RGB pattern. A comprehensive
overview of these techniques can be found in relevant literature which can be found
in [HK13].

Compressed measurements from these devices are intermediate representations,
requiring post-processing computational algorithms to reconstruct the full three-
dimensional object cube. Despite various heuristic and learning-based approaches
in the literature, the reconstruction problem remains challenging due to the ill-posed
nature of the inverse problem. The linear system is often under-determined, with
the number of equations significantly lower than the number of parameters to es-
timate, necessitating careful prior selection (e.g., sparsity of image data in some
transform domain [Dab+08], low rank structure of spectral images across the spec-
tral dimension [Liu+18]) in order to constraint the space of possible solutions. Tra-
ditional model-based iterative solvers struggle to recover high-quality spectral im-
ages in a reasonable timeframe with relatively small deviation from the latent dense
spectral volume even with good image priors. Furthermore, the existing trade-off
between spatial/spectral resolution and computational time inherently limits any
possible deployment of such solvers and therefore snapshot spectrometers in real-
time sensing applications. To this end, learning-based alternatives can address those
shortcomings specifically with respect to inference speed and overall reconstruction
quality but lack robustness towards new unseen data with large domain gaps. This
works deals primarily with Computed Tomography Imaging Spectrometer (CTIS)
devices the concept pf which was independently invented by Takayuki Okamoto
[OY91] in 1991 and by Theodor V Bulygin [BV92] in 1992.

CTIS is a snapshot spectrometer that rely on dispersive optics like diffraction
gratings to separate light based on its wavelength on project it onto a two-
dimensional pixel array. The working principle of a CTIS systems is depicted in
figure 2.2 where light coming from the scene is first imaged by an objective lens onto
the system aperture (field stop) and then a collimating lens is used to parallelise
light rays which are then dispersed by a diffraction grating into zero as well as
higher order projections and imaged by a monochromatic image sensor. In this
way, spectral information of the three-dimensional object cube can be encoded as
spatio-spectral multiplexed signals in a two-dimensional imaging medium. The
main advantage of CTIS systems is the possibility of achieving very compact form
factor allowing such technology to be used in small mobile devices with size and
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FIGURE 2.2: (A) Schematics of a CTIS imager, (B) Sensor measurement of a dis-
cretized spectral cube.

weight restrictions.

Even though CTIS is capable of capturing spectral information within a single
exposure, recovering the latent object cube form the intermediate two-dimensional
measurement is challenging and requires solving an ill-posed inverse problem
which stems from the missing cone issue in Fourier Slice Theorem [HB81] as in most
other Computed Tomography (CT) based imaging systems. The theorem states that
the two-dimensional Fourier transform of each projection within the sensor image
is equal to a plane through the three-dimensional frequency representation of the
latent object cube. Due to the limited number of projections and the low diffraction
efficiency, the full frequency representation cannot be recovered as that would
require an infinite number of projections. Consequently, it is impossible, from a
mathematical point of view, to recover that missing information since there is now
way one can sample within the missing cone with conventional imaging senors.
However, satisfactory results can still be achieved using appropriate spectral and
spatial prior information about the scene.

In this work, multiple learning-based approaches are proposed to address the
shortcomings of CTIS and to tackle the hyper-spectral image reconstruction problem
from CTIS measurements beyond the limited spatial resolution of the 0 diffraction
order image. The objective is to achieve a quasi-real-time high spatial resolution re-
construction capability. A first approach introduces P2Cube [Zim+22] to tackle the
spectral reconstruction problem using end-to-end supervised learning, the second
further builds upon P2Cube and introduces Hyper-Spectral and Super-Resolution
Network (HSRN) [MGZ22], a network capable of recovering hyper-spectral images
with high spatial resolution from CTIS sensor measurements and it is partially in-
spired by the conventional Filtered Back-Projection (FBP) algorithm used in most
CT scan-based computational reconstruction methods. Finally, HSRN+ [MGZ24] is
proposed as an enhanced version of its predecessor HSRN: it features a multi-scale
refinement architecture and it is able to reconstruct the three-dimensional spectral
cube in a coarse to fine manner. It is targeted towards higher reconstruction quality
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from real measurements captured by three different CTIS prototypes that were cus-
tom built. Furthermore, a large scale spectral dataset was collected to enable hyper-
spectral image reconstruction and semantic segmentation simultaneously. The main
contributions of this first part of the thesis can therefore be summarized as the fol-

lowing;:

¢ A simple yet efficient network architectures capable of reconstructing spatially
super-resolved object cubes from CTIS measurements in real-time (up to 30 fps
for a cube of size 400 x 400 x 31 voxels in the case of HSRN) and quasi-real-
time performance for HSRN+.

¢ Joint approaches for hyper-spectral image reconstruction and spatial super-
resolution from CTIS sensor measurements exploiting aliased information
scattered across the image sensor with a novel multi-scale learning framework

for incremental image refinement.

¢ Extensive experimental studies have been conducted to validate models’ re-
construction performance on synthetic as well as real CTIS data using three
different prototypes achieving significantly better reconstruction quality than
the current state-of-the-art.

¢ Proof of concepts using miniaturized and custom-made CTIS imagers.

* A new large scale dataset for spectral reconstruction and semantic segmen-
tation with high resolution hyper-spectral images and high quality manually
annotated segmentation maps that enable end-to-end learning and model val-
idation for material characterization tasks.

2.2 Prior Art

2.2.1 HSI Devices

Early spectrometers were predominantly scanning devices such as pushbroom
[PE87], whiskbroom [Bru+06], and tunable color filter cameras [HSB02] which are
capable of capturing images with high spatial and spectral resolution but at the
same time they are fairly large and cumbersome devices incorporating multiple
moving parts and requiring long acquisition times. Owing to the quick advance-
ments in compressive sensing and deep learning, snapshot spectrometers or even
conventional RGB cameras [Sim+21; Jia+17] became widely used to capture dense
spectrum of dynamic scenes. CASSI systems [Wag+08; Kit+10] stand out as one of
the most used devices for HSI with numerous reconstruction algorithms that have
been developed thus far to process CASSI measurements. However, these systems
offer poor image quality as the spatial resolution is significantly degraded due to
the use of coded aperture masks. In addition, its spectral resolution is limited by
the sensor pixel pitch along with the non-linear dispersion introduced by the prism
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leading to a trade-off between spatial and spectral resolution. Alternatively, in a
CTIS system [OY91; BV92; HKW12] light is dispersed into multiple tomographic
projections via a Diffractive Optical Element (DOE) forming multiple projections
of the latent object cube on the image sensor, even though the spatial resolution of
such projections is low leading to sub-optimal use of the sensor area, CTIS provides
greater spectral resolution due to its high angle of parallel projections allowing
to resolve higher number of spectral bands. Indeed, CTIS practical applicability
is reduced by the poor spatial resolution of its 0" diffraction order which deter-
mines the resolution of the reconstructed hyper-spectral image [Dou+20; Dou+21;
HWC21]. Furthermore, no previous work has tackled this problem so far, at least
from a computational point of view. In this work, sub-pixel displacements present
in higher diffraction orders are exploited to perform image super-resolution of
hyper-spectral cubes with up to x 6 the resolution of the 0" order image thus paving
the way for more research into CTIS technology.

2.2.2 Compressive Spectral Imaging

Recovering dense three-dimensional hyper-spectral cubes from compressed two-
dimensional sparse measurements is ill-posed. Iterative solvers have been proposed
to address the inverse reconstruction problem from several coded inputs depending
on the type of spectrometer used to acquire such measurements. Several approaches
in the literature relied on carefully selected image priors in a Maximum A Posteri-
ori (MAP) estimation framework tailored most of the time for CASSI systems. IST
[DDDMO04] and TWIST [BDF07] incorporated a Total Variation (TV) norm regulariza-
tion term to encourage sparsity of the latent hyper-spectral image in some transform
domain. [Liu+18] introduced DeSCI, which uses a weighted nuclear norm regu-
larizer to solve a rank minimization problem exploiting the low rank structure of
the three-dimensional latent object cube along the spectral dimension formed by
non-local similar patches. Such MAP problem can be solved also via variable split-
ting techniques such as the Alternating Direction Method of Multipliers (ADMM)
[Boy+11] or the Half Quadratic Splitting (HQS) [GY95] method which are used to
decouple the data fidelity and prior terms in the energy function subject to mini-
mization, the prior/regularizer can be solved by a plug-and-play image denoiser
module using off-the-shelf powerful denoisers such as BM3D [Dab+07] or more re-
cently pre-trained convolution neural network as in [Zhe+21]. Even though impres-
sive performance has been achieved using model-based approaches, the required
computational time complexity is still quite large [Men+21]. In an attempt to com-
bine the interpretability and flexibility of model-based approaches with the recon-
struction speed at inference time and the large representation capability of deep con-
volutional neural networks, optimizer-based unrolled network architectures have
been introduced in [Zha+21] which combines the best of the two worlds to tackle

the reconstruction problem of object cubes from CASSI measurements.
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Hyper-spectral images from CTIS measurements are usually obtained by the
Expectation-Maximization (EM) solver that is predominantly used for reconstruc-
tion [Vol00] in most computed tomography-based acquisition systems. The EM is
a Maximum-Likelihood (ML) approach that cannot handle priors and is very sen-
sitive to the presumed noise and system models which can be easily inaccurate in
real imaging scenarios leading to sub-optimal performance and poor reconstruction
quality. Modified versions of EM aimed at introducing prior knowledge into the
optimization framework incorporating some other constraints such as low rank and
superiorization have been proposed in [Li+18] and [HWC21]. A recent GPU accel-
erated EM variant was introduced by [WBH20] and reached significant speedup in
reconstruction time but at the expense of a poor spatial resolution, the authors ex-
ploited the spatial shift invariance of the system matrix which assumes that shifting
the object cube by a certain number of pixels the diffraction pattern at the sensor
plane would be shifted by the same amount. Furthermore, under this assumption
[HDS07] proved that one can diagonalize much of the system matrix in Fourier do-
main achieving a computational speedup by a factor of 4000. One can argue that
learning-based approaches, thanks to their vast representation capability and fast
inference time once trained, are nowadays a very good option for real-time high-
quality image reconstruction from CTIS measurement that could achieve a good
trade off between spatial and spectral resolution. An approach of this family is that
of [Hua+22], who proposed a straight-forward end-to-end learning approach that
learns a mapping beween CTIS measurements and ground truth object cubes in a
supervised manner through a multi-branch CNN as an analogy to ensemble learn-
ing. [Ahl+22] introduced a hybrid approach exploiting a CNN followed by an EM
solver where the network provides an initial estimate for EM, the contribution of
such hybrid workflow is subject to how sensitive the EM is to changes in the ini-
tial guess as the optimization problem is linear and thus the algorithm would likely
converge to the same result regardless of the choice of the initial guess. [Zim+22]
implemented an initial reshaping layer enabling 3D processing of high dimensional
input data to account for spatio-spectral correlations within multiple higher diffrac-
tion orders which is then followed by a U-Net like architecture [RFB15] used to refine
the estimated object cube. The work of [WC23] used a cGAN-based architecture con-
ditioned on the 0" diffraction order image. Unlike all previous approaches, for the
first time the spatial resolution issue for CTIS has been addressed from a compu-
tational point of view in the works discussed in this thesis [MGZ22] and [MGZ24].
The proposed approaches reconstruct a spatially super-resolved object cube with up
to x4 the resolution of the 0" order image on synthetic CTIS data and by factors
of x6 and x2 on two different real data sets captured by different CTIS prototypes.
Superior reconstruction capability has been demonstrated with respect to current
state-of-the-art with a lightweight model prompting lower inference time compared
to other competitors. Similarly, in [Yua+23] the authors used a high-resolution RGB
camera in combination with a CTIS system to produce a spatially super resolved
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image using spatio-spectral pixel interpolation between the low-resolution EM out-
put and the high-resolution RGB image. In contrast, the approaches proposed in
this thesis need just a single image sensor allowing for compact systems to restore a
high-quality object cube.

2.2.3 Image Super-Resolution

Image super-resolution aims at recovering a high spatial-resolution image from
decimated and noisy sensor measurements. It require solving an inverse ill-posed
problem given single or multiple measurements wherein, unlike simple image
interpolation, the aim is to recover high-frequency components from aliased low
frequency data. Earlier works such as that of [Yan+10] exploit a sparse representa-
tion in combination with dictionary learning to map low resolution sparse signals
to their high resolution counterparts. Similarly, [GBI09] used an example-based
super-resolution approach exploiting non-local self-similarity in natural images.
Recent approaches are instead mostly based on deep learning models due to
their high capacity to learn complex non-linear mappings from low-resolution to
high-resolution image spaces and effectively reconstruct visually appealing high
frequency details [Lim+17; Led+17]. In burst imaging pipelines multi-frame "true"
image super-resolution exploits information provided by distinct frames in the
form of aliasing which is caused by relative camera and/or object motion during
exposure with sub-pixel accuracy. Complementary information present in multiple
frames is combined via image registration and mapped into a higher resolution pixel
grid with high spatial fidelity to the latent high-resolution image. Such methods can
be divided into model-based approaches [Wro+19; Li+10] and deep learning-based
ones such in [Dud+22] where significant performance gains have been achieved
with high resolution factors. In this work, the proposed spatial super-resolution
modules are inspired by multi-frame image super-resolution approaches. However,
due to the particularity of CTIS measurements, such approaches must be adapted
to take into account the structure of the sensor image.

2.2.4 Multi-Scale Learning

Multi-scale learning in the form of hierarchical representation of multi-resolution
feature maps is used as a way of producing high-quality outputs starting from a
coarse and initial reconstruction and performing intermediate incremental refine-
ment steps leveraging prior coarse knowledge. [EPF14] used a multi-scale deep net-
work for depth refinement from a single input image and propagated coarse depth
prediction via shortcut connections to a subsequent fine-scale network by a simple
channel-wise concatenation. [DRS20] used a multi-scale approach in the task of non-
blind image deblurring where coarse feature maps are incrementally refined through

a multi-stage network architecture starting from low up to high resolution space. In
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this work such approach is adapted to spectral image reconstruction and spatial im-
age super-resolution and it shows that multi-scale learning in this context eases the
reconstruction burden on the network especially when the spatial resolution scale
increases as coarse spectral information is propagated through the network via fea-
ture level concatenations prompting the network to learn to reconstruct fine spatial
details in the final predicted spectral image.

2.2.5 Spectral Image Segmentation

Material characterization benefits from spectral imaging as the task of classifying
objects based on their spectral signatures becomes significantly easier when dense
spectral information is available at higher spectral resolution compared to standard
RGB data with only three color primaries. Multiple works dealt with semantic image
segmentation using spectral data as input: in satellite imaging and remote monitor-
ing [YWL13], in industrial and recycling sorting-based applications [Bac+23], and
food inspection [Dja+23]. The lack of sufficiently large high-quality (spectral and
spatial-wise) annotated data still limits the development of new approaches for se-
mantic image segmentation from spectral data. This work further contribute to this
field by providing an experimental dataset designed to assess and validate the per-
formance of different methods on the tasks of spectral image reconstruction and

semantic segmentation for the benefit of material characterization tasks.

2.3 Methodology

2.3.1 CTIS Image Formation Model

The CTIS image sensor features a dispersion-free sharp central image which is the
0" diffraction order of the DOE surrounded by higher order diffraction images:
where the 3D object cube is first dispersed by the DOE, i.e., spectral bands are shifted
spatial-wise with respect to each other, and then integrated spectral-wise by the im-
age sensor to end up with a smeared and multiplexed two-dimensional projection.
The underlying image formation model for CTIS can be written as:

¢g=Hf+e¢ 2.1)

where ¢ € RIMN)*T and f € RIHWA)IXT are, respectively, the vectorized sensor image
with spatial dimensions M x N pixels and the latent object cube to be reconstructed
with A spectral channels and spatial dimensions of H x W pixels (see figure 2.9).
The 0% diffraction order image dimensions are roughly 10% of those of the image
sensor. H € RMN)*(HWA) g the system matrix that maps each pixel from the ob-
ject space to its counterparts in the image space (basically it contains the PSFs for
each wavelength and for each projection), and € is an additive noise term. In order
to better reproduce actual sensor noise, a combination of additive Gaussian noise



2.3. Methodology 25

gD, P = Aei® U = F{P}

S : Phase shift Pupil function PSFf;e;;e(jctr|c
DOE height
map (h) . =P
PSF intensity
l distribution

Convolution&
summation

I

Image sensor

FIGURE 2.3: Fourier optics-based CTIS data simulation pipeline. Butterfly image
from [Mon+15]

and signal-dependent shot noise sources can be used in simulating synthetic CTIS

measurements.

2.3.2 CTIS Data Simulation

Fourier optics principles are used to simulate CTIS sensor images via wave field
propagation (see figure 2.3). Starting from the height map h of the DOE with a re-
fractive index n = 1.5 and designed for a reference wavelength A* = 550 nm (i.e., it
creates a phase shift of 7t at A*), the phase shift ®, introduced by such DOE on an

incident planar wave front is obtained by:

2(n—1)

b, =
A A

h (2.2)
The angular spectrum method is then used to propagate the field from the object
plane to the sensor plane by applying the Fourier transform of the pupil function P.
The PSFs for each wavelength are obtained by calculating the squared modulus of
the field at the sensor plane via:

PSF) o | F{A -V ®})? 2.3)

Where F is the Fourier Transform operator and A is a binary mask defining the aper-
ture area. The PSF has a large support spanning the total image sensor area and is
convolved with ground truth object cube f interpolated across the spectral dimen-
sion in order to get as many spectral bands f, as possible. All convolution results of
the spectral PSF with the corresponding spectral bands are summed together to end

up with a two-dimensional CTIS sensor image:

A
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FIGURE 2.4: Top: Keplerian CTIS design where the field stop is placed on the back

focal plane of the imaging lens (Lens I). Bottom: Galilean design where the field

stop is placed in front of Lens I and Lens II where the two lenses act as a beam
expander.

The obtained sensor image in the simulations has 14 higher diffraction orders sur-
rounding the dispersion-free 0" order in a 3 by 5 formation: each higher diffraction
order is basically the ground truth hyper-spectral cube smeared across the spatial

dimension following the projection angle.

2.3.3 Real CTIS Data Acquisition

Real CTIS Prototypes: Experiments on real world data were carried out using two
different CTIS prototypes, a third prototype dubbed MACTIS was later used to test
a new system design and it is discussed in details in Section 2.5.8. Table 2.1 shows
the detailed specifications of the two first setups, i.e.: (i) A full-frame CTIS prototype
with a Keplerian design is used where the field stop is placed in between the imag-
ing lens (lens I) and the collimating lens (lens II) which in turn is followed by the
DOE as illustrated in figure 2.4. Such system provides good 0" order image quality
with reduced optical aberrations, however the overall form factor of the device is
large since the beam expander requires that lens I and II be separated by the sum of
their focal lengths, which hinders its usefulness in outdoor or mobile applications.
(ii) Alternatively, a Galilean beam expander can be used to significantly reduce the
form factor of the system [Ama+23a] where the field stop is placed in front of a lens
combination featuring two stacked negative lenses and a positive one acting as a
beam expander, this allows for a smaller form factor since lenses I and II must be
separated by the difference of their focal lengths, the schematic in figure 2.4 illus-
trate such configuration. In the remaining of this chapter these two systems will be
referred to as either "Keplerian" or "Galilean" designs. Both the Keplerian and Galilean
prototypes used in the following experiments are shown respectively in figures 2.5
and 2.6. The Galilean compact CTIS setup offers high spatial and spectral resolution
and a larger FoV of about (Fov_v = FoV_h = 9°) but at the expense of vignetting
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TABLE 2.1: System specifications for the Keplerian and Galilean CTIS designs

Spatial Resolution Spectral Resolution Dataset
System | Sensor ot Ground SR range step # # Train/test
(MP) order Truth factor (nm) (nm) bands | samples split (%)
Keplerian | 1.2 140 x 140 840 x 840 x6 | 455—-695 10 25 496 80/20
Galilean 13 312 x 420 936 x 1260 x3 | 470—-700 7 33 1324 92/8
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FIGURE 2.5: Data acquisition setup featuring a full-frame CTIS prototype and a

ground truth camera with a Varispec™ tunable color filter (left). A sample cap-

tured CTIS measurement with a ground truth hyper-spectral image in sSRGB space
(right).

and image distortion affecting the 0" order image as well as higher order projections
which the network needs to correct for.

Data Acquisition: The full-frame Keplerian CTIS data acquisition setup is shown
in Figure 2.5 along with an actual measurement sample and the corresponding
ground truth object cube shown in sRGB space. Light is simultaneously captured
by the CTIS camera and the ground truth camera using a beam splitter. 25 spectral
bands are recorded for each scene, the recorded bands span the range from 455 nm
to 695 nm with a spectral resolution of 10 nm in the visible range. A dataset was
captured using this setup containing 495 measurements along with corresponding
object cubes to train and test the proposed learning-based approaches. The DOE
design produces 12 higher order diffractions surrounding the 0" order image in a
circular pattern.

On the other hand, figure 2.6 shows a real capture along with the acquisition
setup using the Galilean CTIS prototype to acquire real data to train and test HSRN+
with a miniaturized CTIS camera [Ama+23a]. Ground truth data for the two setups
are obtained via a secondary optical path that includes a VariSpec™ tunable color
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FIGURE 2.6: Data acquisition setup featuring a compact CTIS prototype and a

ground truth camera with a Varispec™ tunable color filter (left). A sample cap-

tured CTIS measurement with a ground truth hyper-spectral image in sSRGB space
(right).

filter and a monochrome image sensor. A flipping mirror is used to redirect light to
either the CTIS camera or the ground truth camera.

A large number (1.2k) of hyper-spectral images along with their corresponding
CTIS measurements were captured using this setup. Part of this larger dataset cap-
tured with the Galilean prototype has been made public (https://github.com/LTTM/
HSIRS) featuring 33 spectral bands spanning the spectral range from 470 nm to 700
nm with a spectral step of 7 nm and it has 592 hyper-spectral images, notice that such
ground truth object cubes can be used to simulate different spectrometers and not
only limited to CTIS and validate their performance accordingly. Further in depth
discussion about this dataset will be presented later on in Section 2.5.5. Table 2.1
summarizes the characteristics of the two collected datasets, both of them feature
scenes with varying spectral and spatial complexity including different background
colors and textures with high spectral variety and multiple metameric objects and
fake/real food items, a few ground truth sample images from the Keplerian as well
as the Galilean setups are shown in figures 2.7 and 2.8.

2.3.4 CTIS Image Pre-Processing

The CTIS sensor image in two-dimensional image space is first cropped and re-
shaped into multiple three-dimensional pseudo-spectral cubes as shown in figure
2.9, this is motivated by the fact that spectral information is smeared within higher-
order projections.
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FIGURE 2.7: Sample captured ground truth images (in sSRGB space) used to train
and test the network on the Keplerian CTIS data.
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FIGURE 2.9: Cropping and reshaping of the input CTIS sensor measurement for
later processing by the neural network.

The reshaping is done so that classic convolution filters can connect areas where
the corresponding spectral information is distributed. Furthermore, the reshap-
ing layer produces a data structure suitable for subsequent processing via three-
dimensional convolution layers and for preserving only valid sensor regions con-
taining actual information. In particular, given a set of P projections {g, 1;;8 (includ-
ing the 0" order image with p = 0), let G, denote the reshaped three-dimensional
cube from g, were A slices of size H x W are cropped via a sliding window (see
figure 2.9) and stacked channel-wise ending up with a three-dimensional volume of
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FIGURE 2.8: Sample captured ground truth images (in sRGB space) used to train
and test the network on the Galilean CTIS data.

shape H x W x A. Notice that each channel of the cube G, contains the latent spec-
tral band to be reconstructed multiplexed with adjacent bands. The rechaped data
volume G is obtained by repeating the 0 order image across the spectral dimen-

sion.
2.3.5 Learned Back Projection

2D projection space 3D HS space
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FIGURE 2.10: Back-projection of multiple 2D CTIS projections into a 3D HS cube.

Let fBP denote the back-projected object cube computed from the sensor measure-
ment ¢ as:
P =HTg (2.5)

Where H' is the adjoint operator of H. It is easy to see that each pixel in fBF is

just the sum of all its contributing counterparts from g as each element of H' maps
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FIGURE 2.11: (a-d) are respectively the ground truth spatially super-resolved ob-

ject cube, back projected image 5", filtered back projected image f7B”, and object

cube fLBP obtained by the proposed LBP layer. (e-f) are the spatial and frequency
responses of the ramp filter used to obtain fFBP.

pixel contributions from the sensor back to object space. This operation, illustrated
by figure 2.10, maps a low dimensional 2D projection into higher dimensional 3D
hyper-spectral space and it can be implemented simply by repeating each channel
from {G, 5;3 across the spectral dimension and summing them with equivalent
spectral slices from all other projections for each wavelength to produce a first coarse
rendition of the latent three-dimensional object cube:

BP(A) = Pf Gp(A) V A€l ., Al (2.6)
p=0

fBP contains coarse spatio-spectral information of the latent cube but it is heav-
ily blurred with undesirable silhouette artifacts (an example is shown in figure 2.11).
To overcome the blur issue, the Filtered Back-Projection (FBP) algorithm is typically
used in computed tomography scans where prior to the back-projection step, the
measurements are filtered using a band limited high pass Ramp filter w introduced
by [RL71]. Such filter has the frequency response shown in figure 2.11 (f) and pre-
serves only high frequency components in the input measurement thus reducing
the amount of blur in the final back-projected image as illustrated in figure 2.11 (c).
Rewriting (2.6) to account for the filtering operation results in the following expres-

sion:

fFBP(A):PZ_;w*Gp(A) V o A€e(L.., Al 2.7)
=

where the symbol * represents a two-dimensional convolution. Notice that w is a
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FIGURE 2.12: Schematics and workflow of the LBP layer. Such module learns to
reconstruct back-projected hyper-spectral cubes in an end-to-end fashion.

fixed kernel that mainly enhances the contrast within each projection to reduce the
amount of blur. However, it introduces high frequency noise and ringing artifacts
due to the shape of the filter’s spatial response as shown in figure 2.11 (e). The
back-projection is also a global operation and it evenly maps two-dimensional pro-
jected data back into hyper-spectral space through the summation in Eq.(2.7) and it
does not take into account different contributions from each higher order projection,
i.e., the amount of dispersion differs for each projection leading to varying degrees
of overlap between consecutive spectral bands thus higher order projections that
are more dispersed carry more reliable spectral information than those dispersed
across smaller sensor area. In this work, a Learned Back Projection (LBP) layer is
proposed to address the aforementioned limitations. The layer architecture is illus-
trated in figure 2.12, LBP tunes such filtering operation to each individual projection
by learning different kernel weights for each projection in an end-to-end fashion.
In more detail, intra-projection correlations are learned by means of a single three-
dimensional deconvolution layer [Zei+10] that takes as input the four dimensional

volume cube G € RP*HxWxA

with P channels corresponding to each { gp}i;é. This
deconvolution layer has M three-dimensional filters and produces a feature map
F3 € RMxHXWXA TInter-projection correlations are learned via multiple parallel
two-dimensional deconvolution layers: for each spectral band, all sub-feature maps
from F3 carrying distinct and complementary spatial and spectral information be-
longing to the same spectral band A are concatenated channel-wise to form a 3D
cube {F3}4_, € RM*H*W and fed into parallel two-dimensional deconvolution lay-
ers with N filters each. Lastly, the output feature maps from the previous stage are

€ RANXHXW and fed into a small U-net-like

concatenated channel-wise to form F?
network ®M¢2¢(.) with multiple two-dimensional convolution layers that acts like
a merger network which produces a coarse rendition of the latent HS cube through

explicit supervision.
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2.3.6 3D Pixel Reshuffling for Image Super-Resolution

3D kernel

'_. Crop area —— Shift direction

FIGURE 2.13: Simplified schematic of the three-dimensional filter’s field of view
taking into account higher order projections cropping and channel-wise stacking.

Local PSFs generated by the DOE carry aliased information as they differ slightly for
each wavelength and for each higher order projection: each projection can be seen
as a unique view of the smeared latent object cube. However, severe spatio-spectral
overlap within the CTIS sensor image makes it extremely challenging to exploit such
information in the context of standard multi-frame image super-resolution where
the provided input data is a set of clear images of the same scene shifted with re-
spect to each other with sub-pixel accuracy, thus spatial super-resolution becomes a
straightforward operation that rely on robust image registration and merging. Nev-
ertheless, in the case of CTIS, one might observe that sub-pixel displacements are
detectable across image edges and that the smearing direction for each projection
preserves image edges along that said direction, e.g., vertical edges are preserved
in vertical higher order projections and so on (see figure 2.13). Given such observa-
tions, the image super-resolution sub-problem is treated in a residual learning con-
text where a three-dimensional Sub-Pixel Convolution layer (3D-SPC) is proposed to
restore high spatial frequency image features learned from distinct information pro-
vided by different higher order projections along with the 0" order image, which
are then combined with the coarse spatio-spectral cube generated by LBP via simple
summation. Ideally, a large enough number of projections is needed to accurately re-
store finer spatial features of the latent cube across more gradient directions but the
finite number of projections provides limited aliased information which further mo-
tivates the use of deep-learning based approaches in this case. The proposed module
is inspired by spatio-temporal processing in video super-resolution [Li+19]. three-
dimensional deconvolutions [Zei+10] are used to learn meaningful correlations be-
tween spatial information scattered across multiple higher diffraction orders along
with the 0" order image. By using multiple layers, it is possible to learn complex
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FIGURE 2.14: 3D-SPC module with sub-pixel shuffling layer. Spatio-spectral cor-
relation from different projections are learned through deconvolution layers.

high level spatial feature maps. To this end, an adaptation of ESPCN [Shi+16] is pro-
posed where it was originally introduced for single image super-resolution. In such
approach convolution layers are applied in low resolution image space, hence it is
computationally efficient and at the same time it achieves competitive image restora-
tion results. This work’s adaptation extends ESPCN in 3D space dubbed (PS3p) and

performs 3D periodic pixel reshuffling with a super-resolution factor s:

PS3p(F°) (x,y,A) =P [s -mod(y,s) +mod(x,s) +1,|x/s], Ly/sJ,)\}
VAEL., Al (28)

where F3 € R¥*HXWxA js a four-dimensional feature map obtained from G €
RPXHXWXA By applying multiple three-dimensional deconvolution layers with the
last layer having s x s output channels. Eq. (2.8) is illustrated by figure 2.14 and
implies that for a given spectral band A, s x s high-resolution pixels are obtained by
periodically shuffling low-resolution pixels from s x s feature cubes. As illustrated
by the simplified schematics in figure 2.13 each filter’s receptive field "sees" differ-
ent signal projections of the same latent object cube region each containing aliased
pixel information and distinct spatio-spectral cues depending on the smearing di-
rection. Mathematically such convolution can be expressed as Out = w3 * {Gp}g;é,
where p is the projection index, ws is a three-dimensional filter, G, € RF*W*A is the
reshaped tensor from a given projection g,:

gp=DH,W) fur (2.9)

where D is a down-sampling operator, H, is a dispersion matrix that models the
DOE effects, W, is an affine warping matrix for sub-pixel displacement, and fpr is
the latent super-resolved object cube to be reconstructed. Such mathematical for-
mulation of the local image formation model for each projection makes it easy to de-
duce the relationship with standard multi-frame image super-resolution approaches
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where in this case H, is added to account for the DOE effects. Notice that each kernel
of wj3 is applied on {G, 1;;3 with each channel carrying distinct yet complimentary

spatial information.

2.4 HSRN: End-to-End Learning for CTIS

In this section HSRN is introduced. Model architecture and workflow will be dis-
cussed followed by data and training details, experimental results discussion and
ablation studies. Finally, concluding remarks, observations, and future outlook con-
cerning this approach will be presented.

Ground truth (X 2) HSRN (x 2) Bicubic (x 2)

'l
/
> 2554 >
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FIGURE 2.15: Proposed network architecture of HSRN (left). Sample recon-
structed object cube in sSRGB space and spectral density curves (right).

2.4.1 Workflow

The network architecture of HSRN is shown in figure 2.15 (left). Reshaped higher
diffraction orders along with the 0" order image are fed into LBP and 3D-SPC blocks
simultaneously, the reason behind such approach is to exploit raw aliased pixel in-
formation directly from the image sensor for 3D-SPC without induced alterations.
It is worth noting that HSRN uses a simplified and lighter version of the LBP layer
described in Section 2.3.5 where the number of output channels in this case is set to
N =1 (see figure 2.12) and the merging network is set to be the identity operator
@Merge = 1 that maps directly the concatenated outputs of the parallel convolution
layers since there are A of them already. The output of LBP is up-sampled bi-linearly
by a factor s to generate coarse spatio-spectral information and added up to the 3D-
SPC residual output with high frequency spatial information to form an interme-
diate rendition of the latent object cube, this estimate is later refined using a small
convolutional neural network with 7 convolution layers each with 64 filters. No
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down-sampling operations, e.g., strided convolution or pooling, are used within the
network in order to preserve spatial details and since the network is relatively shal-
low, computational burden is insignificant. The output is summed up with a super-
resolved 0™ order obtained using the original [Shi+16] 2D-SPC method. Notice that
even without such residual connection the network output will not be heavily af-
fected (refer to ablation studies Section 2.4.5 for more details). Rather, we observed
that such connection introduces robustness to noise and leads to more stable train-
ing with faster convergence on noisy data in accordance with [Zha+17]. Figure 2.15
(right) shows a reconstructed hyper-spectral image with x2 and x4 the resolution of
the 0" diffraction order shown in sSRGB space — the conversion from hyper-spectral
space to standard RGB is done via the conversion function of the CIE 1931 norm
[EcI31] — and compared with a bi-cubic up-sampled reference object cube, notice
that fine spatial details are restored with minimal artifacts. Spectral density curves
are also shown along with the Pearson correlation coefficient between the predicted

and ground truth curves.

2.4.2 Data and Training Setup

Synthetic datasets: The performance of HSRN is evaluated on synthetic CTIS data
generated from three publicly available datasets: TokyoTech-31 [Mon+15], CAVE
[Yas+10], and ICVL [ABS16]. A train/test split was chosen so that ~ 75% — 80% of
the total number of images are used to train the network and the rest for testing,
table 2.2 summarizes the characteristics of the three different datasets used in this
work.

¢ TokyoTech: Downloaded from http://www.ok.sc.e.titech.ac.jp/res/
MSI/MSIdata31l.html and contains object spectral response. All 35 scenes

provided by the authors have been used to simulate CTIS images.

e CAVE: Downloaded from https://www.cs.columbia.edu/CAVE/databases/
multispectral/ and contains object reflectance taken in an indoor setting.

¢ ICVL: Downloaded all data samples from https://github.com/icvl/shred?
tab=readme-ov-file and contains object spectral response of mostly outdoor

scenes.

Results on a fourth dataset, Hyper-spectral Video introduced by [MH12], were used
to assess real-time reconstruction performance of a pre-trained HSRN model and
will be discussed in details later on. CTIS measurements are simulated with 200
spectral bands spanning the range from 420 nm to 720 nm for TokyoTech-31 and 400
nm to 700 nm for CAVE and ICVL using Fourier optics as described in Section 2.3.2.
In particular, a ground truth hyper-spectral cube interpolated across the spectral
dimension is convolved with a wavelength-dependent PSF to generate a CTIS sensor
image with 14 higher diffraction orders (see figure 2.15). In case of noisy inputs shot
noise was also introduced simulating a quantum full well capacity of 1000 photons.
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TABLE 2.2: Synthetic dataset statistics and train/test split sizes.

Dataset Spectral range (nm) | Spectral bands | Environment | Reflectance | Resolution | Size | Train split | Test split
CAVE [Yas+10] 400 - 700 31 Indoors v 512x512 32 25 6
ICVL [ABS16] 400 - 700 31 Outdoors X 1392x1300 | 200 160 40
TokyoTech [Mon+15] 420 - 720 31 Indoors X Multi res. 35 26 9

For each scene, image regions used to simulate a sensor measurement are obtained
by cropping, via sliding window of size 100 x 100, sub-images from the original
high-resolution object cubes to simulate CTIS images in case the network is trained
without spatial super-resolution, i.e., s = 1. Otherwise image regions are cropped
with size 100s x 100s (s being the up-sampling factor) effectively decreasing the sizes
of each train/test split. The training data is augmented using random rotation and
flipping of the ground truth object cubes spatial-wise before simulating the sensor

image.

Implementation Details of Competitors: In the following, reconstruction perfor-
mance of the proposed model is compared against those from other state-of-the-art
approaches which were reproduced with some necessary modification to account

for the shape of the input measurement:

e Zimmermann et al. [Zim+22]: The first cropping and reshaping layer of
P2Cube has been modified to take into account the new DOE design which
imprints 14 higher diffraction orders arranged in a 3 x 5 pattern. The rest
of the network is kept as is and all hyper-parameters were also unchanged.

The network was trained according to the procedure described in the original
paper.

¢ Ahlebaek et al. [Ahl+22]: In the original work each higher diffraction order is
cropped along with the 0 order into individual sub-images each containing a
whole projection then stacked channel-wise and the resulting data volume is
then fed to a U-Net architecture. However, the input dimensions used in the
original paper were small (250 x 250 pixels), instead in this work some diffrac-
tion orders are dispersed across larger sensor areas (up to 450 x 450 pixels)
prompting the padding of the 0" order (which originally has a resolution of
100 x 100 pixels) by 350 x 350 pixels. In the modified network architecture of
[Ahl+22] the third downstream convolution block with 256 filters is removed
and a convolution block with 256 filters in the upstream direction was added,
a cropping layer after the last convolution layer was also added to restore the
original spatial resolution of the 0" diffraction order. Notice that the network
was primarily modified only to account for the new input data dimension pre-
serving at the same time its performance for fair comparison.

¢ Expectation Maximization: A different implementation than the one pro-
vided by [Ahl+22] was used in this work: The new implementation is
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GPU-accelerated and is much faster exploiting the shift invariance property of
the CTIS system matrix.

Training details: For all experimental setups, except otherwise specified, the net-
work is trained using the Adam optimizer [KB14] with a learning rate of 1e~* and
for 500 epochs with the following loss function:

L(IF,1;) = MSE(I], I;) + v - MAE(IZ, I5) (2.10)

Where I is the reconstructed object cube with spatial resolution sH x sW x A, I
is the ground truth object cube with the same resolution. The additional use of the
MAE loss term is motivated by the fact that it better preserves high spatial frequen-
cies, these two loss terms are balanced using a discrepancy parameter -y empirically
set to 0.1. A third MSE loss term is incorporated in order to force LBP to produce
coarse spatio-spectral images, it is evaluated between the output of LBP I}, and the
s-fold down-sampled reference object cube I, to match the 0" order resolution.

Lrpp(Ifpp, Isy) = MSE(I[gp, Is,) (2.11)

2.4.3 Experimental Results on Synthetic Data

First, spectral reconstruction performance is evaluated without the spatial super-
resolution task. Then, the network generalization capability is validated via cross
dataset validation where it is trained on some dataset and tested on a completely
different one. Later, results are reported of HSRN trained to jointly perform the
tasks of hyper-spectral image reconstruction and spatial super-resolution with x2
and x4 increase of the resolution of the 0 diffraction order image.

Hyper-spectral image reconstruction: Quantitative results on object cubes of size
100 x 100 x 31 pixels reconstructed by HSRN are reported in table 2.3 along with
qualitative results in figure 2.16. Quantitative and qualitative performance is com-
pared to that of [Zim+22] and [Ahl+22]. Since both competing approaches did not
tackle the problem of spatial super-resolution, the scale factor s has been set to 1, thus
reducing the sub-pixel shift layer in HSRN to an identity mapping. The proposed
model is able to outperform both competing approaches on all three datasets with a
smaller number of trainable parameters and faster reconstruction speed at inference
time. More in detail, [Zim+22] is capable of outperforming [Ahl+22] with a much
lighter model size, but is in turn outperformed by HSRN that is also lighter. Figure
2.16 shows three reconstructed hyper-spectral images from TokyoTech-31, CAVE,
and ICVL converted to sSRGB space. HSRN is able to produce higher-quality spatial
and spectral distributions with less artifacts such as color leakage and blurring.
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TABLE 2.3: Quantitative comparison on multiple spectral benchmark with com-

peting approaches.
Method #Params (M) Time (s) TokyoTech-31 CAVE ICVL
(CNN/EM) | RMSE, PSNR} SSIM{ | RMSE, PSNRt SSIM{ | RMSE, PSNR} SSIM{
Ahlebaek et al. [Ahl+22] 26.6 0.05/>10 | 0.035 28.849 0872 | 0.039 28708 0.823 0.021  33.896 0.881
P2Cube [Zim+22] 1.5 0.017 / - 0.028 33.033 0917 0.024 34448 0941 0.005 47497 0991
HSRN 0.9 0.010 / - 0.025 33.809 0.941 0.018 37.282  0.964 0.004 48.470  0.995
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FIGURE 2.16: Reconstruction results on three different benchmarks with object
cubes of size 100x100x 31 pixels.

Joint spectral & spatial super-resolution reconstruction: HSRN is able to recon-
struct object cubes with a x2 and x4 increase in spatial resolution with respect to
that of the 0" diffraction order image achieving a resolution suitable for most sens-
ing applications. Quantitative performance results are shown in table 2.4 along with
reconstructed samples in figures 2.17a and 2.17b. In order to validate the spatial
super-resolution capability of HSRN, its performance is compared with two straight-
forward sequential approaches where HSRN reconstruction stage (with s = 1) is
used and followed by either: (i) a bicubic up-sampling with refinement through
multiple convolution layers trained separately or (ii) by the original ESPCN net-
work from [Shi+16]. In the easier case of X2 super-resolution factor, both sequential
approaches are able to achieve satisfactory performance but still significantly lower
than the one achieved by HSRN and with x4 they fall short of achieving acceptable
results while HSRN preserves high PSNR scores (up by roughly 7 dB on ICVL com-
pared to [Shi+16]). Notice that the reconstruction speed on an NVIDIA RTX A6000
GPU of a 400 x 400 x 31 object cube is about 0.033 seconds. Closeup inspection of

TABLE 2.4: Hyper-spectral reconstruction and spatial super-resolution results.

Data Scale HSRN Bicubic+CNN Shi et al. [Shi+16]
RMSE] PSNRT SSIM?T | RMSE| PSNRf SSIMtT | RMSE| PSNRfT SSIMt
TokyoTech-31 x2 0.026  34.738  0.945 0.033 33495 0914 0.029  33.030 0.928
CAVE x2 0.018 37.244  0.956 0.024 35.313  0.942 0.022 35.538  0.944
ICVL x2 0.011  42.065 0.972 0.025  39.371  0.958 0.018  40.623  0.965
TokyoT. + CAVE | x4 0.033  32.731  0.907 0.078 24556 0.844 0.057  27.375 0.888
ICVL x4 0.012 39.661 0.955 0.061 29.065  0.889 0.036 32.732  0.902
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FIGURE 2.17: Hyper-spectral and super-resolution image reconstruction results of
a test scene from CAVE (A) and ICVL (B).

tigures 2.17a and 2.17b show that in the case of x4 super-resolution fine spatial de-
tails are restored such as the ones within the structure of the lemon in the zoomed-in
image region, spectral density curves also show little deviation from the ground
truth spectral data with high correlation values.

Cross dataset validation: Model transferability and generalization capability is
also assessed using cross-data validation on TokyoTech-31 and CAVE by training
the network on one dataset "Source" and testing it on the other "Target" so that per-
formance is validated in both directions (Source < Target). Results are compared to
those from [Zim+22] since it is the second best performing approach. Both archi-

tectures are trained to reconstruct object cubes with 29 spectral bands (420 — 700
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TABLE 2.5: Cross-dataset validation results (1/] percentages in blue).

Scale TokyoTech-31 — CAVE CAVE — TokyoTech-31
RMSE| PSNRT SSIM T RMSE| PSNRT SSIM T
P2Cube [Zim+22] | x1 | 0.025(113.6%) 33.539 (]4.5%) 0.917 (13.2%) | 0.058 (1114.8%) 29.931 (110.7%) 0.895 (12.9%)
HSRN x1 | 0.022 (14.5%) 35.164 (11.6%) 0.948 (12.1%) | 0.034 (147.8%) 31.052(110.2%) 0.918 (12.6%)
HSRN x2 | 0.022 (137.5%) 34.912(]8.4%) 0.930 ({3.4%) | 0.033 (150%) 31.687 (J13%)  0.922 (3%)

TABLE 2.6: Comparison with CASSI-based reconstruction approaches.

Method Time Checkerboard Butterfly
(CPU-s) | RMSE] PSNR{ SSIMtT | RMSE] PSNRT SSIMf
SS-CASSI [Men+21] | 16911 0.08 18.536  0.611 0.025 29.322  0.799

GAP-TV [Yual6] 17 0.055 21975 0.700 0.027 27446 0.884
DeSCI [Liu+18] 4465 0.055 21975 0.700 0.019  29.191  0.909
HSRN 0.1 0.022 29.186  0.898 0.010 35.944  0.956

nm) with the same spatial resolution of the 0" order, i.e., s = 1. Furthermore, re-
sults of HSRN with spatial super-resolution capability with a factor of x2 are also
reported. All evaluation metrics shown in table 2.5 prove the generalization capa-
bility of the proposed model where it achieves better performance with respect to
[Zim+22] at the base resolution and maintains good performance with x2 spatial

super-resolution on the Target test set.

Comparison with CASSI-based reconstruction methods: To showcase the suit-
ability of CTIS systems for spectral image sensing beyond the spatial resolution
limitation of the 0" order image, reconstruction performance comparison with other
spectral reconstruction methods designed for CASSI systems is presented using
two different test images (Checkerboard and Butterfly) picked from the test set
of TokyoTech-31. The reconstructed object cubes are of size 400 x 400 x 29 pixels.
Quantitative reconstruction performance reported in table 2.6 compares HSRN, that
performs joint spectral reconstruction and x4 image super-resolution, with model-
based iterative approaches for CASSI, that optimize directly on a super-resolved
measurement coded by an aperture mask which degrades the spatial resolution of
the measurement. Despite the low resolution of the 0" order image, HSRN is able to
reconstruct object cubes with higher spatial and spectral accuracy achieving a gain
of 6 to 8 dB of PSNR compared to CASSI reconstruction methods. Visual results in
figures 2.18a and 2.18b confirm the numerical metrics showing how HSNR restores
very fine spatial details on the Checkerboard and Butterfly images with minimal

color artifacts due to inaccuracies in the reconstructed spectrum.

Hyper-spectral video reconstruction: In this experiment HSRN is pre-trained us-
ing a combination of TokyoTech-31 and CAVE datasets for the task of joint spectral
reconstruction and spatial super-resolution with x4 that of the 0" diffraction or-
der image. The trained model is then tested on the Hyper-Spectral Video dataset
[MH12] mimicking real-time performance using an NVIDIA RTX A6000 GPU. This

dataset contains 31 video frames each with a spatial resolution of 752 x 480 and
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FIGURE 2.18: (A) Reconstruction of the checkerboard test target. (B) reconstruc-
tion of the butterfly test target.
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FIGURE 2.19: Sample of a reconstructed image from CTIS real data captured with
the Keplerian setup along with spectral density curves of some selected regions.

33 spectral bands (400 — 720 nm), only 29 spectral bands are used in accordance
with the number of bands used in training data and the object cubes are spatially
resized to 100 x 100 pixels in order to simulate CTIS images. The reconstruction
time of a cube of size 400 x 400 x 29 is roughly 0.033 seconds. Real-time recon-
struction performance is shown in the publicly available video clips at: https:
//medialab.dei.unipd.it/paper_data/HSRN_CTIS/ at the original frame rate of 30
fps and slowed down to 2 fps for better visualization. HSRN is able to recon-
struct fine object details with good spectral accuracy specially considering that it
was trained on different data.

2.4.4 Experimental Results on Real Data

The real CTIS dataset captured by the full-frame Keplerian CTIS prototype is used
to train and test HSRN in the real domain. The network reconstructs hyper-spectral
images with spatial resolution of 278 x 278 pixels, that is x2 the resolution of the
0" diffraction order and with 25 spectral bands spanning the range from 455 nm
to 695 nm. A real sample of a reconstructed cube is shown in figure 2.19 in sSRGB
space together with three individual spectral bands (455 nm, 605 nm, and 695 nm)
and selected spectral density curves of two different image regions. Achieving good
reconstruction quality on real data is challenging due to the limitation imposed by
the misalignment between CTIS sensor measurement and the ground truth object
cubes since the acquisition setup has two optical paths and therefore misalignment
is inevitable. HSRN+ is later proposed to tackle this issue.


https://medialab.dei.unipd.it/paper_data/HSRN_CTIS/
https://medialab.dei.unipd.it/paper_data/HSRN_CTIS/
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TABLE 2.7: Quantitative results of different ablation experiments.

LBP | 3D-SPC | Residual | TokyoTech-31 (w/ shot noise)
PSNR?T
X v v 30.214
v X v 30.521
v v X 31.501
v v v 31.832

2.4.5 Ablation Studies

The contribution of each module in HSRN is evaluated by testing the network per-
formance without said module. The network was trained for 250 epochs in all abla-
tion experiments and tested on the TokyoTech-31 test set with shot noise. Table 2.7
shows how each component gives a relevant and non-overlapping contribution to
the results. Worth noting that the residual connection from 2D-SPC does not lead to
significant degradation when excluded from the model architecture while 3D-SPC
and LBP have bigger influence on the overall performance of the network.

2.4.6 Concluding Remarks

The above work introduced a joint approach for hyper-spectral image reconstruc-
tion and spatial super-resolution from CTIS data tackling for the first time the major
shortcomings of such system and providing an efficient model capable of perform-
ing reconstructions in real-time. By exploiting side information from higher diffrac-
tion orders HSRN was able to produce object cubes with fine spatial details and up to
x4 the spatial resolution of the 0" diffraction order image. That being said, the main
limitations of this approach are two-fold: Spectral-wise, small angles of parallel pro-
jection, i.e., the amount the HS cube is smeared in a given projection, may hinder the
reconstruction quality as spectral bands severally overlap each other at the sensor
and the network struggles to accurately resolve them. Spatial-wise, enough higher or-
der projections are needed to reach acceptable reconstruction accuracy specially for
large super-resolution factors, e.g., x4, as more complementary information would
be available which in turns require larger sensor area. Furthermore, performance in
real data lags behind simulations due to the large domain gap, to this end, a new en-
hanced model will be presented which focuses on improving the real CTIS camera
and acquisition setup and the reconstruction performance on real data captured by

such system.

2.5 HSRN+: Multi-Scale Learning for CTIS

In this section HSRN+ will be presented. Model architecture and workflow will
be discussed followed by data and training details and then results discussion and
ablation experiments. Finally, concluding remarks, observations, and future outlook

will be discussed.
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FIGURE 2.20: HSRN+ architecture: Coarse rendition of the latent object cube is

obtained by LBP output added to image features with high spatial frequencies

restored by 3D-SPC module. The output is built incrementally from coarse to fine
scales each supervised with a dedicated loss function.

2.5.1 Workflow

HSRN+ preserves the building blocks of HSRN and adds to that a multi-scale
learning-based architecture. The full network architecture of HSRN+ is shown
in figure 2.20. Higher diffraction orders along with the 0" order image are first
reshaped into three dimentional cubes and then fed into LBP and 3D-SPC modules.
Worth noting that HSRN+ uses the original architecture of the LBP layer described
in Section 2.3.5 where the number of output channels in this case is set to N = 32
(See figure 2.12) and the merging network ®M¢’8¢(.) contains seven consecutive
convolution layers and takes as input a dense feature volume with A x N channels
obtained by concatenating the outputs of the previous parallel convolution layers
since there are A of them. ®M¢8¢(.) produces a coarse spatio-spectral data volume
which is summed up to the 3D-SPC residual output with high frequency spatial
information to form an intermediate object cube, the estimate is later refined using

a multi-scale refinement strategy.

2.5.2 Multi-Scale Supervision and Training Details

In HSRN+, the three-dimensional object cube is built incrementally in a coarse-to-
fine fashion as shown in figure 2.20. The idea is to build coarse spectral information
first then gradually refine the reconstruction quality spatial-wise in each subsequent
stage where coarse knowledge from previous levels is propagated to the next ones
to gradually ease the reconstruction burden as the resolution scale increases. Coarse
feature maps from the second to last convolution layer in each refinement network
are up-sampled and concatenated with the re-sampled LBP output to form the input
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to the next finer stage. The refinement networks (shown in the green boxes) used to
produce the final output at each level have the same U-net-like architecture with 8
convolution layers and skip connections in between. Multi-level loss functions are
therefore used to train the model, each dedicated to supervise the output at differ-
ent spatial resolutions. The loss corresponding to a given super-resolution factor s
is used to back-propagate gradients across the network. In each level, the spatial
resolution of the output image is doubled, starting with half the original resolution
of the 0" order image, the total number of stages depends on the target resolution
factor s. Therefore, the loss function used to train the network on synthetic data for

a given factor s is:
LI, 1) = MSE(IZ, L) + v - MAE(IZ, L) (2.12)

Where I} is the reconstructed object cube with spatial resolution sH x sW x A, I is
the ground truth object cube with the same resolution. The use of the MAE compo-
nent is motivated by the fact that it is better at preserving high spatial frequencies.
The discrepancy parameter 7 is set to 0.1 in the following experiments. LBP is also
explicitly supervised with a separate loss term:

Lrpp(Ifpp, Isy) = MSE(I[gp, Is,) (2.13)

Where I}, is the LBP output and I is the ground truth object cube down-sampled
to match the 0" order resolution.

In the case where the network is trained using real data and due to the inher-
ent misalignment and slight perspective shift between the ground truth image and
the CTIS sensor image (see Section 2.5.4 for more details) an additional loss term is
further incorporated, more specifically, a contextual loss [MTZM18] is added which
is agnostic to pixel location and only measures the similarity between feature vec-
tors extracted, using a pre-trained VGG model [SZ14], from the reconstructed object
cube with the ones extracted from ground truth spectral images. The contribution of
such loss term is demonstrated in figure 2.21 where sharper image edges with better
reconstruction quality are obtained in contrast to using the standard pixel-wise loss
terms only. The new loss function used to train the network on real data is therefore:

LRl (1, 1,) = MSE(IZ, I) + v - MAE(IZ, I) + Lox (I7, Is) (2.14)

Where Ly is the contextual loss from [MTZM18].

It is worth noting that since the feature extractor VGG network was originally
trained on RGB images from ImageNet [Den+09a], it expects as input a RGB image.
A straightforward approach would be to convert both predicted and ground truth
object cubes into sSRGB space before evaluating such loss term but this operation
would inevitably lead to the loss of spectral information due to the conversion pro-
cess into SRGB space. A better approach is to feed the feature extractor for each input
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Ground truth With CX Without CX

FIGURE 2.21: A reconstructed hyper-spectral image (in sSRGB space) using a net-
work trained with and without the CX loss term on real data. Notice how most of
the undesirable blurring artifacts are corrected for.

training sample three randomly chosen spectral channels from the prediction as well
as the reference object cubes where the central band is always fixed at the center of
the spectrum, i.e., green, and the other two bands are randomly selected from the
two extreme regions of the spectrum. In this way one can ensure that spectral infor-
mation is preserved during training all while exploiting spatial features generated
by the VGG network. The same data split was used as in HSRN [MGZ22] for all ex-
periments using synthetic data. The network is trained for 500 epochs using Adam
optimizer and a learning rate of 1 x 104

2.5.3 Experimental Results on Synthetic Data

In this section reconstruction results on synthetically generated CTIS data are pre-
sented and discussed. Furthermore, qualitative and quantitative comparisons with
other competing state-of-the-art approaches are presented.

Spectral reconstruction: The reconstruction performance of HSRN+ is compared
to other closely related CTIS approaches. Since none of the proposed models so
far tackled the issue of spatial super-resolution, at least from a computational point
of view, one can start by comparing the reconstruction performance using HSRN
and HSRN+ without performing super-resolution, i.e., s = 1, with that from other
competing approaches. It is worth noting that recently Yuan et al. [Yua+23] pro-
posed a multi-sensor fusion approach to reconstruct spatially super-resolved images

TABLE 2.8: Quantitative comparison on multiple spectral datasets with competing

approaches.

Method #Params (M) Time (s) TokyoTech-31 CAVE ICVL

(CNN/EM) | RMSE| PSNRfT SSIMt | RMSE| PSNRfT SSIMfT | RMSE| PSNRT SSIMt
Ahlebaek et al. [Ahl+22] 26.6 0.05/>10 0.035 28.849  0.872 0.039 28.708  0.823 0.021 33.896  0.881
P2Cube [Zim+22] 1.5 0.017 / - 0.028 33.033 0917 0.024 34448 0941 0.005 47497 0991
HSRN [MGZ22] 0.9 0.010 / - 0.025 33.809 0.941 0.018 37282 0964 0.004 48470  0.995
HSRN+ Small 0.9 0.010 / - 0.022 35.980 0.944 0.018 37.372  0.964 0.004 49.857  0.995
HSRN+ 1.9 0.078 / - 0.020 36.357  0.956 0.017 37.695 0.967 0.003 50.780  0.995
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FIGURE 2.22: Reconstruction results on simulated CTIS data without spatial

super-resolution: the spatial resolution of the reconstructed hyper-spectral cubes

is 100 x 100 pixels. Spectral density distributions for some chosen regions are

shown on the right along with Pearson correlation coefficient between the pre-
dicted and ground truth curves.

from CTIS measurements using an additional RGB image with high spatial resolu-
tion along with the low resolution CTIS measurement. Differently, the proposed
approach in this work requires a single sensor measurement as input without the
need for additional hardware. Table 2.8 and figure 2.22 show quantitative and qual-
itative results on the three publicly available datasets (ICVL [ABS16], TokyoTech-31
[Mon+15], and CAVE [Yas+10]) used previously to train and test HSRN. In order to
highlight the improvements of HSRN+ with respect to its predecessor, regardless of
network size, performance metrics for a smaller version of HSRN+ are also reported
in the table 2.8. In particular, in this setting the number of convolution filters in each
reconstruction network (showed in green boxes in figure 2.20) is reduced from 64
to 32 resulting in an overall size of 0.9 M trainable parameters roughly on par with
those of HSRN.

The three proposed model variants shown in the gray rows of table 2.8 outper-
form the current state-of-the-art on all three benchmarks and across all evaluation
metrics. HSRN+ achieves the best PSNR on the TokyoTech-31 dataset [Mon+15]
with a gain of over 2.5 dB with respect to HSRN. Even with roughly the same num-
ber of trainable parameters, a gain of over 2 dB is achieved by HSRN+ "small" which
highlights the contribution of the employed multi-scale learning strategy. The same
performance gain can be observed on the ICVL dataset [ABS16] with a gain of 2.3
dB obtained by HSRN+ "small" with respect to HSRN. On the other hand, a smaller
performance gain with respect to HSRN can be observed for CAVE [Yas+10], as
the training set of such dataset is quite small and the network tends to over-fit it.
Hence, early stopping has been used to prevent such behaviour. However, even
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TABLE 2.9: Quantitative comparison for the joint tasks of spectral reconstruction
and spatial super-resolution on three benchmarks.

Data Scale Shi et al. [Shi+16] HSRN [MGZ22] HSRN+

RMSE] PSNRfT SSIMtT | RMSE] PSNRT SSIMt | RMSE| PSNRT SSIMT
TokyoTech-31 X2 0.029  33.030 0.928 0.026 34738  0.945 0.023  36.452 0.953
CAVE x2 0.022 35538 0.944 0.018 37244 0.956 0.018  37.264 0.958
ICVL x2 0.018  40.623  0.965 0.011  42.065 0.972 0.010 43.119 0.976
TokyoTech-31 + CAVE | x4 0.057 27375 0.888 0.033 32731  0.907 0.031 32969 0.918
ICVL x4 0.036  32.732  0.902 0.012  39.661 0.955 0.010 41.805 0.967

on the CAVE dataset, the three proposed variants outperform competitors [Ahl+22;
Zim+22] by significant PSNR, SSIM, and RMSE margins. Such numerical evaluation
is also reflected in the reconstructed hyper-spectral images shown in figure 2.22,
where reconstructed hyper-spectral images are shown in sSRGB space. HSRN+ pro-
duces sharper image details and suppresses unwanted reconstruction artifacts such

as color leakages, chromatic aberrations, and unwanted blur.

Joint spectral reconstruction and image super-resolution: To assess the network’s
spatial super-resolution capability, HSRN+ is trained on synthetic CTIS data with
spatial super-resolution factors of s = 2 and s = 4 that of the the 0" order image,
which has a spatial resolution of 100 x 100 pixels. Quantitative as well as qualitative
results are shown in table 2.9 and figure 2.23. Due to the lack of sufficient number of
images within each individual dataset, the training sets of CAVE and TokyoTech-31
are combined and used to train HSRN+ in the case of x4 spatial super-resolution.

Results from Shi et al. [Shi+16] in table 2.9 correspond to a sequential architec-
ture where a low resolution object cube is first reconstructed using HSRN [MGZ22]
and then individual spectral bands are spatially super-resolved using the original
ESPCN approach of [Shi+16]. HSRN+ achieves the highest scores for all training set-
tings and outperforms [Shi+16] by substantial margins simply because it leverages
additional spatial information scattered across higher order projections. This obser-
vation can be further consolidated by looking at figure 2.23 where spatially super-
resolved hyper-spectral images obtained from HSRN [MGZ22] as well as HSRN+
are shown in sRGB space along with the ones obtained from ESRGAN [Wan+18]
and a simple bi-cubic interpolation. Notice that the super-resolution approaches
highlighted in green in figure 2.23 receive as input a decimated RGB image obtained
by converting the ground truth hyper-spectral cube to sSRGB space and then down-
sampling it by a factor s so they only perform spatial super-resolution/interpolation.
Whereas the input to the two proposed model variants are the CTIS sensor measure-
ments with gray scale decimated 0" diffraction order image. Nevertheless, the two
variants are able to not only produce images with significantly better spatial quality
but also recover the full scene spectrum.

Reconstruction with noisy CTIS data: A realistic noise model is incorporated in
the CTIS sensor image simulation pipeline. Relevant noise sources in this case are
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Bicubic x 4 ESRGAN x 4 HSRN x 4 HSRN+ X 4 Ground truth

Input: Downscaled RGB ground truth image Gray scale CTIS sensor measurement

FIGURE 2.23: Spatial super-resolution performance comparison (s = 4) with ESR-

GAN [Wan+18] and a simple bi-cubic interpolation. Both HSRN and HSRN+ take

as input a gray scale compressed CTIS measurement and produce spatially super-
resolved spectral cubes.

read and shot noise, the former comes from inaccuracies in the sensor readout cir-
cuit and is dominant in dark image regions where signal levels are low, the latter is
related to the quantum nature of light and photon arrival statistics. A realistic model
should take into account the effects of both sources. Read noise can be modeled with
a Gaussian distribution with zero mean while shot noise is signal dependent and is
modeled by a Poisson distribution but can also be modeled as a Gaussian distribu-
tion with the variance being the pixel value. The noise model used in this pipeline
is that of Foi et al. [Foi+08]:

o(x) =/a-y(x)+pB (2.15)

Where ¢ is the pixel-dependent standard deviation of the overall noise level at pixel
x, while & and B are respectively the variances of shot and read noises, and y(x) is
the input pixel value. In the case of CTIS sensor measurements, the values of x and
B are chosen to match those estimated from the real CTIS prototype. In particular,
B is estimated as in [LTO12] capturing a dark scene (where x ~ 0), while « can be
estimated with a white input image where shot noise is dominant. Due to different
light efficiencies of the DOE for the 0 order image and higher order diffraction pro-
jections, two values are estimated for each variance corresponding to the 0" order
image («p, Bo) and higher order projections (g, B). The estimated values from the
real CTIS camera are:

ag = 7.8¢73 , =273
{0 " (2.16)

Bo=10e* , Bg=11le*
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FIGURE 2.24: Simplistic data simulation pipeline (left) versus real data captured
using the Galilean CTIS prototype (right).

It will be shown in the next section that real noise is effectively suppressed in real
reconstruction results.

2.5.4 Experimental Results on Real Data

Real data misalignment: As mentioned before, there is a misalignment between
the CTIS sensor measurements and ground truth object cubes which, if not ac-
counted for appropriately, leads to sub-optimal reconstruction performance as
losses are evaluated between pixels with incorrect locations. To tackle this issue, in
a first step all captured images in the real CTIS datasets are aligned using feature
based homography estimation and in a second step pixel location-agnostic loss
terms are used in the training which was described in Section 2.5.2. Figure 2.24 illus-
trates the difference between the simulated CTIS data using simplistic assumptions
and excluding optical aberrations, and that of real captured data with the Galilean
prototype. The alignment step is done using the 0 diffraction order image since it
is undispersed and the corresponding ground truth image, i.e., a gray scale image of
the object cube in sSRGB space, distortion is corrected for in the 0" order image using
calibrated CTIS camera matrix an then features are detected in both images and
matched accordingly in order to estimate the transformation between them. The
estimated homography matrix is then used to warp the ground truth object cube
to match the 0" order image. Note that this alignment process is not optimal for
every pair of images and might fail sometimes, the alignment accuracy depends on
the number of correctly matched features and some scenes lack sufficient number
of feature points which might leads to an ill-conditioned transformation matrix
and thus wrong warping results. Figure 2.24 shows an example of matched image
features from a real data sample where the alignment error is shown before and
after attempting image alignment and the warped ground truth image. To tackle
this issue, the contextual loss term is added during training as described before.
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TABLE 2.10: Quantitative metrics achieved by HSRN and HSRN+ on real data.

Network Keplerian (x6) Galilean (x2)

RMSE| PSNRf SSIM?T | RMSE| PSNRT SSIMt
HSRN [MGZ22] | 0.042 28189  0.892 0.022  46.127 0.967
HSRN+ 0.031  30.751 0916 | 0.0081 47.016 0.973
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FIGURE 2.25: Reconstruction results on real data captured by the Keplerian setup
with a super-resolution factor of x6 that of the 0" diffraction order image along
with spectral density curves.

Reconstruction results: Model performance on the two real datasets described ear-
lier and captured by the two CTIS setups are presented and discussed here. Quan-
titative as well as qualitative results obtained by the baselines HSRN and its subse-
quent variant HSRN+ are reported in table 2.10 and shown in figures 2.25 and 2.26.

The quality of the reconstruction is in-line with the reported quantitative met-
rics as HSRN+ is able to recover the spectral information of the scene and produce
spatially super-resolved object cubes with fine spatial details even with a relatively
large super-resolution factor (x 6 in the case of Keplerian setup). Notice that the orig-
inal spatial resolution of ground truth images is achieved when using a x6 super-
resolution factor.

Figure 2.26 shows individual spectral bands from a reconstructed CTIS image
captured using the Galilean setup, in this case, due to the large size of the input
CTIS image (13 MP), a super-resolution factor of only x2 is used when training the
two baselines. Notice that for smaller wavelengths the image sensor has a lower
light efficiency and the noise becomes predominant in such region of the spectrum
thus negatively affecting the reconstruction quality of the object cube in the small

wavelength regions (close to blue).
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FIGURE 2.26: Reconstruction results on real data captured by the Galilean setup

with a super-resolution factor of x2 with respect to the 0 diffraction order image.

Individual spectral bands are shown separately along with spectral density curves
of some chosen image regions.

Comparison with the EM solver: To further the performance of HSRN+ with re-
spect to the standard iterative EM algorithm, visual comparison results are shown
in figure 2.27 to showcase performance gain both spatial- and spectral-wise where
quantitative metrics such as PSNR and SSIM values are also reported for each test
image. EM recovers spectral information of the 0" order diffraction image and can-
not, by design, handle optical aberrations such as distortion and vignetting. Further-
more, undesirable artifacts, namely halos and severe blur patterns can be observed
in the reconstructed images by EM due to the lack of a sufficient number of higher
order projections. On the other hand, HSRN+ is not affected by the shortcomings of
the EM solver. Notably, the reconstructed hyper-spectral images do not suffer from
vignetting and undesirable blur artifacts which the network preemptively corrects
for owing to the large network learning capacity as it can reconstruct images with
significantly better quality with limited number of projections. Figure 2.28 shows
the ability to recover spectral information by HSRN+ and EM of a color patch and a
real and fake (made of plastic) lemons, the proposed model is more in-line with the
ground truth spectrum compared to the output of the EM solver. It is worth noting
that the images reconstructed by HSRN+ tend to have the same perspective as the
ground truth images, while the ones produced by the EM solver have the same per-
spective as the 0" diffraction order image, so quantitative measures are calculated
after aligning the output of the EM solver with the corresponding ground truth im-

ages.
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FIGURE 2.27: Reconstruction results from CTIS sensor measurements using the
conventional EM solver and the proposed network HSRN+, quantitative metrics
(PSNR and SSIM) are also reported.
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FIGURE 2.28: Recovered spectral density curves of various image regions namely
a color patch, artificial lemon, and a real lemon. Spectral density curves are nor-
malized by the are under the curve.

2.5.5 Material Characterization

Material characterization is a direct application of spectral imaging. The aim is to
identify and classify different materials and compositions of materials in a scene
based on their spectral signature. Such task can be formulated as a dense per pixel
labeling, i.e., semantic image segmentation. However, very few datasets that deal
with semantic segmentation from hyper-spectral data in indoor settings have been
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FIGURE 2.29: (A) Sample images with segmentation maps (super-imposed on
top of the RGB image) of HSIRS containing real/fake food items. (B) Number
of real/fake instances for each class in the dataset.

proposed so far, one of the few is FVgNet by Makarenko et al. [Mak+22]. Still, large
enough high quality annotated data that enables end-to-end learning of deep neural
networks is still scarce. In this work, a new dataset is introduced: HSIRS "High qual-
ity Spectral Image Reconstruction and Segmentation” dataset, a large scale dataset
that contains high quality hyper-spectral images along with accurate and manually
annotated segmentation maps to enable end-to-end learning for the tasks of spectral
image reconstruction and semantic segmentation of different food items in indoor
settings. Additionally, the ground truth images from HSIRS can be used to sim-
ulate any snapshot spectral imaging device and is therefore versatile and suitable
for various spectral reconstruction and spatial image super-resolution tasks. HSIRS
contains 592 hyper-spectral cubes with spatial resolution of 2048 x 2048 pixels. The
spectral bands are in the visible spectrum range of 470 nm up to 700 nm with 7 nm
spectral steps leading to a total of 33 bands. In addition, the dataset features 20 food
classes as shown in figure 2.29, notice that each one of these classes have real and
fake instances leading to a total of 40 distinct semantic classes. The number and
layout of objects varies across scenes along with different background colors and
overall scene complexity providing a good benchmark not only for semantic image
segmentation but also for other downstream tasks such as spectral reconstruction
and spatial image super-resolution.

As a semantic segmentation baseline, a ResU-net architecture [Dia+20] is trained
to segment images from HSIRS using either hyper-spectral data or CTIS measure-
ments directly as inputs compared to segmentation results achieved using RGB im-
ages as input (obtained by converting hyper-spectral object cubes into sSRGB space



56 Chapter 2. Snapshot Spectral Imaging

TABLE 2.11: Quantitative metrics for the semantic image segmentation task on the
test set of HSIRS, all metrics are expressed in (%).

Input mloU  F1 Pixel Prec. Pixel Acc.
RGB 85.62 90.50 89.90 92.05
CTIS Measurement 89.44 91.08 92.57 94.26
Hyper-spectral 91.38 94.59 94.44 94.37

GB

R
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HS input  Ground truth

RGB input

Background Real apple Real banana Real orange Real lemon - Fake cucumber

Fake grapes Fake apple Fake banana Fake orange Fake lemon Fake pepper Unknown

FIGURE 2.30: Sample predicted segmentation maps using either RGB or hyper-
spectral data as input to the network.

using the CIE norm). Input images have been resized to 512x512 pixels. Quantita-
tive results are shown in table 2.11 where widely used evaluation metrics for the task
of semantic segmentation are reported, namely the mean Intersection over Union
(mIoU), Pixel Precision, Pixel Accuracy, and F1 score. Results from table 2.11 high-
light the contribution of spectral data, even with spatio-spectral multiplexing in the
case of the CTIS sensor measurement as input, in achieving better segmentation per-
formance compared to conventional RGB inputs. In particular, performances using
directly the CTIS image are better than just RGB but lower than the ones obtained
with the hyper-spectral data. Some predicted segmentation maps are shown in fig-
ure 2.30 where the predicted segmentaion maps using hyper-spectral data are more
consistent with those of the ground truth comared to using RGB data as input to the
network.

In addition, the confusion matrices for a set of chosen semantic classes are shown
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FIGURE 2.31: Confusion matrices of a subset of chosen semantic classes concern-
ing the network trained on RGB data (left) and hyper-spectral data (right).

TABLE 2.12: Quantitative metrics for several ablations studies conducted to assess
the contribution of each module within HSRN+.

LBP 3D-SPC MSL L;pgp TokyoTech-31 + CAVE (x4)
RMSE| PSNRt SSIMt
0.031  32.969 0.918
0.038  31.456 0.899
0.043  30.648 0.883
0.037 31970 0.901
0.038  31.371 0.904

NSNS xS
AR TN
AR TN
x NSNS

in figure 2.31, highlighting further the contribution of spectral data with respect
to standard RGB images: the larger spectral information content can be leveraged
to enhance the segmentation performance and predict more accurate segmentation
maps with better distinction between real/fake instances of the same food items.

2.5.6 Ablation Studies

The contribution of each module in HSRN+ is evaluated by testing the network per-
formance without said module. In the following ablation experiments the network
is trained and and tested on data combined from CAVE and TokyoTech-31 datasets
with a spatial super-resolution factor s = 4. Table 2.12 provides three different eval-
uation metrics namely the RMSE, PSNR, and the SSIM. Quantitative results in table

2.12 highlights each component’s relevant contribution.

Contribution of LBP Not only does LBP add a degree of interpretability to the
whole network architecture, but it helps to achieve better spectral reconstruction
quality of the final object cube as indicated by the quantitative metrics reported in
the second row of table 2.12 where the PSNR decreases by 1.5 dB with respect to
the baseline when LBP is omitted. Notice that in this case the number of output

channels, i.e., number of filters, of the three-dimensional deconvolution layer shown
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FIGURE 2.32: Color checker board reconstructed using two variants of HSRN+
with (v) and without (X) MSL with a spatial super-resolution factor of x6.

in figure 2.12 is set to M =1 instead of M =32 and a single 2D deconvolution layer
is used afterwards in place of the parallel workflow of LBP.

Contribution of 3D-SPC Three-dimensional pixel reshuffling maps low-
resolution feature maps into the high-resolution image space. Given the fact
that such low-resolution features carry complementary spatial information from
multiple higher diffraction orders that is needed to restore the high spatial resolu-
tion object cube, it is anticipated that when such information is discarded the spatial
quality of the reconstructed object cubes will be degraded. In order to validate
such observation HSRN+ is trained without the 3D-SPC block but keeping 2D-SPC
since it performs spatial-super-resolution of the 0" diffraction order image without
considering spatial information scattered across higher order projections, the rest
of the architecture is kept unchanged. Quantitative results from the third row table
2.12 show that all metrics dropped significantly compared to those of the baseline
reported in the first row.

Contribution of Multi-Scale Learning (MSL) The use of a multi-scale learning
approach eases the reconstruction burden as the spatial super-resolution factor in-
creases and thus the object cube is reconstructed incrementally using a coarse to fine
manner. It can be observed in table 2.12 that the network performance using a sin-
gle output stage lags behind that of the original architecture with a PSNR drop of
approximately 1 dB. Such behaviour is more prominent when using real CTIS data
where the MSL strategy helps to reconstruct finer details spatial-wise in-line with
ground truth data as shown in figure 2.32.

Contributions of different loss terms Further investigation is dedicated to the
contributions of the LBP loss term (Eq. 2.13) in the context of synthetic data and
the contextual loss term for real misaligned data. An explicit end-to-end supervi-
sion of the LBP module through £ pp enables it to produce a coarse rendition of the
latent hyper-spectral cube that is in turn up-sampled and used as part of the input



2.5. HSRN+: Multi-Scale Learning for CTIS 59

to each subsequent refinement stage as shown in figure 2.20, easing the reconstruc-
tion burden incrementally as the spatial resolution factor increases. Omitting such
explicit supervision leads not only to a loss of the model’s interpretability, but also a
worst overall performance as reported in the last row of table 2.12.

2.5.7 Concluding Remarks

Observations:  In this work HSRN+ was introduced, a joint framework for hyper-
spectral image reconstruction and spatial super-resolution from CTIS measurements
via multi-scale refinement strategy. Reconstruction performance has been demon-
strated on synthetic as well as real CTIS data with high super-resolution factors (up
to x6 for the Keplerian CTIS design). Furthermore, a direct downstream task of spec-
troscopy has been presented and a large scale dataset has been proposed for hyper-
spectral image reconstruction and semantic image segmentation with high quality
manually annotated segmentation maps which is publicly available.

Domain gap: In the case of synthetic data and in order to address the trade-
off between simulation accuracy and speed during training, the CTIS Point Spread
Function (PSF) was simulated based on simplistic assumptions and straightforward
Fourier optics principles, which do not take into account the manufactured DOE de-
viation from the original Computer Generated Hologram (CGH) design and much of
the optical aberrations present in real captures. Such assumptions rely primarily on
the spatial shift invariance of the system’s PSE. The deviation between synthetic and
real measurements makes network adaptation to the real domain challenging. This
was the main motivation for capturing real CTIS data. Since the spectral range and
spectral resolution are different from synthetic data, the network was trained and
tested on each real dataset separately (the ones captured by the Keplerian and the
Galilean CTIS designs). However, since real calibrated PSFs capture all optical aber-
rations and fully characterize the CTIS system, it is worth investigating using real
calibrated PSFs to simulate CTIS sensor measurements and use tat to train HSRN+
and later test it on real captures. A possible data simulation and and real-time test-
ing workflow is shown in figure 2.33 where calibrated PSFs for each projection and
for each wavelength are used to simulate realistic CTIS captures using already cap-
tured hyper-spectral cubes. HSRN+ can be trained on such synthetic data and later
tested in real-world scenarios. [b]

2.5.8 Multi-Aperture CTIS (MACTIS)

A persistent problem encountered when using a single DOE CTIS with a single aper-
ture is the overlap between consecutive higher diffraction orders, e.g. lower wave-
length of 2 order start to overlap with higher wavelengths of the preceding +1

order and so on, which negatively affect the reconstruction qualty of spectral bands
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FIGURE 2.34: (A) Simplified schematics of a single MACTIS aperture. (B) MACTIS
system prototype.

in those overlapping regions specially when using model-based reconstruction ap-
proaches. Furthermore, the system has a low light throughput and is inflexible with
complex optics setup. To address those shortcomings, Amann et al. [Ama+23b] in-
troduced a next generation CTIS system that features a multi-aperture design where
several apertures placed in a grid formation each containing a diffraction grating
followed by a prism (GRISM) to create only one projection per aperture as shown
in the schematics in figure 2.34a . The "0 order" image is obtained using a clear
aperture selected among the ones in the grid. Such design is flexible as each projec-
tion angle can be obtained by rotating the GRISM of a specific aperture in a desired
direction and with a desired rotation angle. MACTIS prototype is shown in figure
2.34b if has 24 aperture in a 6 x 4 formation, among them is a clear aperture for the
undispersed image. The image sensor used in the prototype is a Ximea CMV50000
47.5 MP monochromatic sensor and the recoverable spectral range is from 450 nm

to 750 nm with a 7 nm spectral resolution. The proposed reconstruction models i.e.,
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FIGURE 2.35: RAW MACTIS sensor measurement (left). Reconstructed spectral
bands and sRGB image of the scene (right).

HSRN or HSRN+, are still valid in the case and can recover object cubes from MAC-
TIS measurements. Reconstruction results of a scene containing a real red pepper
using HSRN+ trained solely on synthetic data as discussed above can be seen in
figure 2.35.






63

Chapter 3

Holographic Phase Imaging

3.1 Introduction

Dennis Gabor introduced holography in his seminal work [Gab49] where he demon-
strated true three dimensional imaging capability by simultaneously recording co-
herent light’s intensity and direction, i.e., phase, within a two dimensional interfer-
ence pattern. Gabor’s prototype, depicted in figure 3.1 on the right, embodies an
in-line holographic imaging setup. Here, an object of interest is illuminated by a
coherent light source, generating a diffraction pattern at the detector plane obtained
through the interference of two waves: one scattered by the object and another unob-
structed background wave passing through the object plane. This interference pat-
tern encodes both amplitude and phase information of the wave scattered by the ob-
ject, thus characterizing its complete complex transmission distribution, which can
be recovered using phase retrieval-based reconstruction techniques. The ability to
capture phase information allows for interesting applications such as phase imaging
in microscopy [Mir+12], where it allows to generate image contrast for transparent
ultra-thin microscopic specimens like single cells and other biological samples.
Advancements in phase imaging have facilitated close-up non-invasive inspec-
tion of living cells [PDP18], with applications in medicine [Par+08], biology [KVB08],
and neuroscience [Cin+17]. Highly accurate interferometry, driven by holographic
imaging, finds applications in high-precision engineering [VS70] and material sci-
ence. Phase contrast microscopy [BS42] also offers phase imaging capability but
lacks quantitative measurement ability. In contrast, holography is able to quantify
exactly the amount of light phase shift making it suitable for applications requir-
ing precise measurements, such as accurate tolerance estimations of microscopic
features and three-dimensional object reconstruction [Zie+19], additionally, in-line
holographic setups can be used in compact, mobile, and lensless imaging systems
free of any optical aberrations. Despite its desirable features, in-line holography
typically requires iterative numerical reconstruction [G594] to retrieve high-quality
images and suppress undesirable artifacts, such as the twin image [Zha+18], which
corresponds to the latent field’s complex conjugate recorded as a byproduct by the
image sensor and appears as an out-of-focus, blurry image superimposed onto the
true sharp one, resulting in inevitable, sometime severe, image quality degradation.
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FIGURE 3.1: Lens-free in-line holographic setup: (Left) Digital In-line Holographic
Microscope (DIHM) used in this work. (Right) schematics of the different DIHM
components.

Recent advancements have demonstrated the efficacy of learning-based meth-
ods in tackling holographic reconstruction, both in supervised [Riv+18; Che+22;
Che+23a] and unsupervised [Hua+23] manners and to suppress, to some degree,
the twin image artifacts. The scarcity of real large-scale holographic measurements,
coupled with ground truth complex transmission data, has led most approaches in
the literature to rely primarily on synthetic data. However, due to the significant do-
main gap between synthetic and real holographic measurements, achieving model
transferability to different domains remains challenging and no approach with ef-
fective generalization capabilities have been demonstrated so far.

This work address for the first time this issue and proposes a comprehensive
and versatile framework based on an unrolled deep learning architecture inspired
by a model-based reconstruction strategy that is robust to domain changes. This is
made possible through the proposed model’s interpretability: in this way one can
leverage large scale synthetic data to effectively learn the inverse holographic im-
age formation model and showcase outstanding generalization ability to the real
world domain without any explicit adaptation. Furthermore, a joint framework for
in-line holographic image reconstruction and spatial image super-resolution is intro-
duced, where complimentary spatial information in the form of aliasing introduced
by sub-pixel displacements between consecutive holographic measurements is ex-
plicitly exploited for the benefit of image super-resolution. The main contributions
of this work are therefore the following:

¢ This work introduces a versatile framework that seamlessly integrates in-line
holographic image reconstruction with spatial super-resolution and supports

an extensive refocusing range.
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¢ Generative models are used to generate large scale synthetic data leveraged
to learn the inverse model underlying in-line holographic image formation
within an interpretable manner which ensures robust generalization capabili-

ties well beyond the data distribution of the training domain.

¢ The proposed approach is validated on standard datasets and also through
real world samples imaged with a costum made Digital in-line Holographic
Microscope (DIHM): it achieves high-quality reconstruction and demonstrates

the framework’s efficacy and practical utility in real-world applications.

3.2 Prior Art

3.2.1 [Iterative Phase Retrieval Algorithms

These algorithms are typically based on error reduction and commonly used in dig-
ital in-line holography to reconstruct the latent complex field from real-valued holo-
graphic measurements. Gerchberg and Saxton [GS594] first proposed an alternating
field projections approach between the object and detector planes while enforcing
support constraints, such as positive absorption profiles within defined areas on
the object plane, and intensity constraints on the detector plane, where the mod-
ulus square of the field must match the measured intensity (see figure 3.2). With
sufficient number of iterations the field typically converges towards the latent one.
Fienup [Fie78] later proposed some modifications to the original method of [G594]
resulting in the Hybrid Input Output (HIO) variant which incorporates a feedback
parameter to relax the hard support constraint on the object plane, resulting in sig-
nificantly better reconstruction quality with faster convergence. Indeed, it can be
shown that such error reduction approaches are special cases of an inverse prob-
lem solving framework [Mom+19] which can be prone to bad local minima and in
some cases divergence. Fienup’s modification helps avoid possible stagnation by
further regularizing the possible solution space, HIO has been widely used to this
day in the literature and it serves as a baseline method, with variants using single
or multiple input holograms captured at different heights referred to as "SH-PR"
or "MH-PR", respectively. Iterative methods leveraging prior knowledge of the tar-
get sample, such as sparsity [Den+09b; Zha+18], have demonstrated the ability to
produce cleaner images by enforcing such constraints. Moreover, iterative solvers
help mitigate the undesirable artifacts of the twin image, as demonstrated in pre-
vious studies. For instance, Zhang et al. [Zha+18] devised a compressive sensing
approach employing an iterative shrinkage/thresholding strategy to gradually re-
duce such artifacts. Latychevskaia et al. [LF07] achieved twin image-free in-line
holography through an iterative alternating projections approach without enforcing
prior knowledge on the object of interest. Chen et al. [CWH22] proposed an iter-
ative method for holographic image reconstruction and computational refocusing
optimizing a least squares problem with plain gradient descent steps. Niknam et
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FIGURE 3.2: Alternating projections in between sample and detector planes

al. [NQL21] and Chen et al. [Xiw+24] employed an untrained neural network with
randomly generated weights as a natural image prior within a model-based recon-
struction framework. Adversarial iterative techniques have also been investigated
by Chen et al. [Che+23b] where the authors used a generative network to learn the
inverse image formation model of in-line holography, a discriminator is then used
to distinguish between the original hologram and the one simulated using the pre-

dicted complex field.

3.2.2 Learning-based methods

These methods offer inherent immunity to the twin image issue. Networks trained
using pairs of holographic images and sharp ground truth data learn a direct map-
ping between the two sets, circumventing the need to model the underlying physics
of holographic image formation. Once trained successfully, these methods can pro-
duce twin image-free and sharp reconstructions. However, this straightforward
black box approach may encounter unexpected failure cases when presented with
new data exhibiting different statistics than that seen during training. Recent work
by Chen at al. [Che+22; Che+23a] demonstrated promising model transferability
by training a network based on Fourier operators [Li+20] using real data from a
specific biological tissue type and testing it on different other types. Despite this
advancement, such approaches may struggle to generate high-quality images when
confronted with test samples that significantly differ from the training data or orig-
inate from entirely different distributions. The work of Chen et al. [Che+23a] is
closely related to the proposed approach in this thesis, as it also performs spatial
super-resolution. However, while the exact methodology employed by [Che+23a] to
perform such task remains undisclosed, several key distinctions set this work apart:
(i) image alignment and registration is explicitly incorporated to leverage aliased
information for spatial super-resolution. (ii) The proposed network architecture pri-
oritizes interpretability, enhancing robustness to new unseen real-world data. (iii)
The proposed network operates independently of changes in illumination wave-
length and/or detector/object distance, eliminating the need for retraining when
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FIGURE 3.3: The overall fully differentiable architecture of HoloADMM: A stack of
low resolution noisy holograms captured at different heights used to reconstruct a
high-quality and spatially super-resolved complex field.

these variables are altered. Rivenson at al. [Riv+18] introduced a supervised tech-
nique where an input hologram is first back-propagated through free space to gen-
erate an initial estimate of the latent field which is then fed into a multi-scale CNN
that refines it. Huang et al. [Hua+23] proposed a self-supervised learning approach
where a network similar to that of Chen et al. [Che+22] is trained using a physics
consistency loss with a strategy similar to that of [Che+23b] where the loss is evalu-
ated between the input hologram and a simulated one using the predicted complex
field distribution.

3.3 Methodology

In this section the image formation model for in-line holography will be presented

along with the problem formulation and the proposed model.

3.3.1 Image Formation Model

The schematics in figure 3.1 illustrate the basic setup of Gabor’s in-line lensless holo-
graphic imaging system which is use in the DIHM prototype in this work. Given a
latent complex transmission field at the object plane x € C"* sampled at high reso-
lution with spatial dimensions h X w, for each height z;, i = 1,..., N a hologram can
be simulated using the following equation:

fS/TirZi(x) = DSWTi|PZiX|2 3.1)
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Where f;r, : C"™ +— R"" is the forward in-line holographic image formation
model. The latent field x is propagated to the detector plane using the complex near-
field Fresnel propagation kernel P, [Foi+08]. The real valued hologram is obtained
by calculating the modulus square of P,,x which is then spatially warped using the
matrix Wy simulating spatial shifts in the (#,v) plane (see figure 3.1) with sub-pixel
accuracy, defined by the set T = {(7{', 7), ..., (T, %) }. These spatial shifts are neces-
sary for enabling image super-resolution capability, see Section 3.4.3 for more details.
D; is a down-sampling matrix that reduces the image size by a factor s, resulting in
dimensions ' = h/s and w’ = w/s. Notice that the image formation model as de-
scribed here is non-linear, more general, and physically accurate where the object
of interest is assumed to have both absorption and phase shift properties—though
absorption can sometimes be negligible for thin and transparent micro-organisms.
Additionally, sensor read and shot noise sources are also simulated using the noise
model from [Foi+08]:

o(k) = Ja-y(k) + (62)

Where ¢ is the pixel-dependent standard deviation of the noise level at pixel k, with
« and 7y representing the variances of shot and read noises, respectively, and y(k) is
the clean input pixel value.

3.3.2 Problem Formulation

The aim of this work is to reconstruct a spatially super-resolved complex trans-
mission distribution from a given stack of noisy low-resolution input holograms
H = |hy, ..., hn| captured at N different heights z = [z1, ..., zx] with spatial shifts
T ={(,1),.... (%, %) }. This problem can be reformulated as a regularized least

squares minimization:
o~ 1 2
(%, 7) = argmin 7 [H — forz (x) [l + B (x) (3.3)
X, T

Where Y is a regularizer that constrains the possible solution space on the distribu-
tion of the latent field x and B is a discrepancy parameter controlling the strength
of such regularization. Accurate prediction of z is important in order to reconstruct
x as the field at the detector plane can be propagated to the object plane and vice-
versa using P, or its conjugate P;. The value of z can be accurately estimated using
any computational refocusing technique from the literature [Tam+17]. Spatial shifts
T need to be estimated with sub-pixel accuracy for multi-frame image registration,
thereby enabling spatial image super-resolution. The optimization framework as ex-
pressed in Eq. 3.3 is non-linear in all optimization variables (X, T) and can be solved

by iteratively optimizing for one variable at a time while keeping the other one fixed,
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i.e., by alternating the following (A) and (B) steps:
1
(4) x=argmin [H = fura ()2 + B¥ () (34)

. 1
(B) T = argmin 1 [|H — fua(x)] 35
T

3.3.3 HoloADMM: End-to-end Learning For QPI

Solving for the latent field (A): Eq. 3.4 is a regularized non-linear least squares
with no closed-form solution for X: a good approximation can be obtained iteratively
with a proper image prior ¥ such as Total Variation [ROF92] or other natural image
priors. Choosing a proper ¥ to solve Eq. 3.4 is not trivial: depending on the target
scene properties, multiple possible image priors can be used. In this work, a deep
convolutional neural network is used to learn a suitable prior agnostic to individual
scene properties owing to the large representation capacity of deep networks. To this
end, a variable splitting technique is used to solve Eq. 3.4 namely the Alternating
Direction Method of Multipliers (ADMM)[GM76] where an auxiliary variable v is
introduced such that:

(%,9) = argmin% IH = foea()|2 + BE(V) s x—v =0 (3.6)

Note that Eq. 3.6 is now a constrained version of the previous formulation in Eq. 3.4
where the data-fidelity and prior terms are no longer coupled and consequently they
can be solved for separately, Eq. 3.6 can be further split into multiple sub-problems
by first retrieving its scaled augmented Lagrangian:

A 1 2 2 2
£, v,0) = 1 [H ~ freaG)lE+B¥W) + & xtu B+ 2 a6

where u is the scaled Lagrange multiplier and p is a penalty term for the constraint
in Eq. 3.6 forcing the final estimate v to be as close as possible to the true solution
x. To minimize Eq. 3.6 the saddle point of Eq. 3.7 needs to be found by iteratively
solving the following three sub-problems:

1
x < argmin £;™"(x, v, u) = argmini IH — for(X)]3 + g Ix+u—v|5 (3.8)
X X
v < argmin £,"(x, v, u) = argming X +u—v|5+B¥ (V) (3.9)

u<—u+x—v (3.10)

The full model architecture is shown in figure 3.3: in each ADMM iteration
(shown in the grey box), x in Eq. 3.8 is updated using multiple steps of a plain
gradient descent or any other gradient based update rule, e.g., conjugate gradient.
Since x = a+ib € C, gradients are calculated using Wirtinger derivatives [MT95]
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FIGURE 3.4: Detailed implementation of each unrolled ADMM iteration.

where x is updated via:

X4—X—a- ai*ﬁgw’“(x, v,u) (3.11)
Where % = %(aa—a + i%), x* is the complex conjugate of x, and « is a learning rate.
The gradient calculation requires defining the backward model of f; ., which is de-
noted in this work with fslim: It can be approximately implemented by first up-
sampling all N low resolution input holograms, back-propagating each hologram in
the stack using PZ*]_, i = 1,..., N back to the object/sample plane, and aligning the
resulting complex images. Finally, the final back-propagated output x” is obtained
by averaging all N aligned complex fields. Eq. 3.9 can be viewed as a simple de-
noising problem with the identity matrix I as the forward model and a noisy input
x + u, where the target is to estimate a clean complex field v. In principle, any plug-
and-play denoiser should be suitable to solve Eq. 3.9. However, to achieve better
performance and enable end-to-end learning, a trainable convolutional neural net-
work is used as a denoiser that acts as a learned image prior which in this case is a
ResUnet architecture [ZLW18]. Finally, the update step of u is straightforward.

figure 3.4 shows a detailed implementation of the update rule for any given in-
termediate estimate x where multiple steps of gradient descent are first performed
to solve Eq. 3.8 followed by a denoising step to solve Eq. 3.9. Notice that the weights
of the prior ResUnet architecture are shared among all ADMM iterations which are
unrolled to form the overall network architecture of the proposed HoloADMM. The
weights are learned in a supervised end-to-end manner together with all the other
hyper-parameters namely the scaled Lagrange multiplier p from Eq. 3.7 and the
gradient descent learning rate & from Eq. 3.11.
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Complex Conv layer (64) LeakyReLU activation layer | Sigmoid activation layer
FIGURE 3.5: Shallow residual network.

Solving for spatial shifts (B): In principle any image registration algorithm can
be used to estimate spatial shifts T = {(t}, 7)), ..., (T}, T%) } between a reference
frame (hologram closest to the object plane) and all the other frames. Note that
the registration is not performed on the raw input holograms because diffraction
patterns are different due to field propagation since the distance between the object
and detector planes changes with each capture. The registration is instead carried
out on the images of the back-propagated stack of N holograms. In this work, a fast
FFT based alignment approach with arbitrary sub-pixel accuracy [GSTFO08] is used

to align the images in the input stack.

Complex shallow network: Since the target domain is complex by nature, the ini-
tial estimate (x° € C) undergoes further processing through a shallow complex con-
volution network [Gub16] in order to learn close correlations between its real and
imaginary components without the need to separate them into two distinct chan-
nels. Such network, depicted in figure 3.5, is designed with a residual connection
linking the input and output distributions, enhancing information flow and reduc-
ing noise in x*: it has multiple convolution layers with complex kernels in C thus
the learned weights are complex in nature. Complex convolution neural networks
[Gub16] are suitable to learn correlations in the complex domain where the inputs
as well as the learned weights are in C. Let x € C be a complex transmission field
expressed as a + ib, and w € C a complex learnable convolution kernel expressed as
wg + iwy. A complex convolution operation can therefore be seen as a combination
of four different real ones:
w* X = (wr +iwy) * (a+ib)

(3.12)
= (wr*a—wr*b) +i(wg*b+ wj*a)

The shallow residual network used in this work is depicted in figure 3.5. It has 5
convolutional layers, each with 64 learnable filters followed by a LeakyRELU acti-
vation layer except for the last one that is followed by a Sigmoid activation layer.
The residual connection prompts the network to perform image enhancement, as

shown in figure 3.6, where the output is just a sharper and enhanced version of the
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FIGURE 3.6: Input and output images (from a real beads hologram) of the shal-
low complex CNN. The network learned to enhance image quality by producing
sharper details.

input image. Recall that the output of such network serves as an initial guess to the
unrolled network based on the ADMM solver that is the next step.

Initialization: As depicted in the initialization block in figure 3.3 (blue box), after
estimating the relative spatial displacements using the back-propagated fields, x° is
obtained by applying the backward model f¢ 1,z as described before and feeding the
resulting complex field to the shallow residual complex network. u® and v° are set
to 0. The initial value for the learning rate a of the plain gradient descent step in
Eq. 3.11 is set to 0.01 and p in Eq. 3.7 is set to 0.1, recall that both of these variables
are learned in an end-to-end fashion. The number of ADMM steps/iterations n = 5
which are unrolled, and the number of gradient descent steps in each iteration is
L =3.

Stable diffusion

Random shapes

Increased sparsity

FIGURE 3.7: Synthetic data generated using a stable diffusion model (top left) and
a software that generate random shapes with different sparsity levels (bottom left).
An input latent field and its simulated hologram (right).
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3.3.4 Datasets and Training Details

The lack of real holographic datasets, along with ground truth complex fields, is the
main limitation hindering the development of learning-based reconstruction mod-
els. Self-supervised approaches, [Hua+23; NQL21] where the loss is evaluated be-
tween a real captured hologram and a simulated one using the predicted phase and
amplitude distributions of the latent complex field, suffer from three major draw-
backs: (i) The problem formulation is severely ill-posed since multiple possible so-
lutions might correspond to the same measurement, eventually leading to inaccurate
reconstruction that does not necessarily correspond to the true target, (ii) designing
effective self-supervised loss functions can be challenging. These loss functions need
to capture relevant characteristics of the data and the reconstruction task, which may
not always be straightforward to define, (iii) The real forward model, if not carefully
designed, will further contribute to low reconstruction quality even with small sim-
ulation inaccuracies. Large scale real data with ground truth complex distributions
is not trivial to collect, in fact, ground truth data used in the literature is obtained
by the MH-PR algorithm [Fie78] or other closely related variants which imposes an
upper-bound hindering the true reconstruction capability of any network. One can
therefore argue that learning an accurate inverse model through large-scale pixel-
accurate synthetic data is crucial for high-quality reconstruction. To this end, a large
number of synthetic microscopic data is generated featuring images with varying
complexity and sparsity. A generative stable diffusion model [Rom+22] fine-tuned
on microscopic images' is used to generate dense interconnected samples with fine
spatial details, in addition, samples with a varying degree of sparsity were obtained
using a simple software that generates a random number of simple shapes in a can-
vas. figure 3.7 shows some samples generated using the two modalities; sparse
as well as dense data samples are generated to account for the real nature of mi-
croscopic images where individual or few cells as well as dense connective tissues
might be present in a given image. Phase and amplitude distributions are obtained
from a single gray-scale image I by A = |x| = el @ = /x = 1, where w < 0
is a weight determining the degree of transparency of the sample, no amplitude in-
formation (or fully transparent image) corresponds to w = 0, data is simulated with
w = —1.6 to favor highly transparent samples. The simulated dataset contains more
than 100k different training samples. As shown in figure 3.7 (right) input low reso-
lution noisy holograms are coupled with high-resolution clean phase and amplitude
images. During training, wavelengths are chosen randomly from [440 nm, 530 nm,
638 nm| and used to simulate each hologram along with a broad refocusing range
from 0.5 mm up to 1.0 mm with a step size of 10uym. This dataset is challenging
because a single object can have many corresponding holographic measurements
each with different illumination wavelength and/or refocusing distance, forcing any
learning-based approach to effectively learn the inverse model which is agnostic to

1https ://huggingface.co/Fictiverse/Stable_Diffusion_Microscopic_model
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TABLE 3.1: Quantitative comparison results on D; and D, synthetic test data with-
out spatial super-resolution. () is a self-supervised approach.

Method RMSE/ (x107%) PSNRt SSIM
A o A @ A @

D, D, D; D, D; D, D; D, D, D, D; D,
Wu etal. [Wu+21] . - 2031 1247 - - 17160 19163 | - - 0364 0640
Huang etal.’ [Hua+23] | - - 781 1250 | - - 14271 17715 - - 0602 0549
Ren etal. x1 [RXL19] - - 811 431 - - 21343 23822 - - 0647 0.700
Rivenson etal. [Riv+18] | 534 677 943 983 | 23.113 23418 20.628 21987 | 0.736 0766 0.681 0.703
Chen el at. [Che+22] 223 970 433 1529 | 27.318 24.397 24451 21.402 | 0.853 0.782 0.820 0.672
HoloADMM x 1 123 096 242 155 |29.373 30.198 26410 28.092 | 0.923 0.905 0.902 0.877

changes in the input distribution. Sub-pixel shifts are randomly simulated in the
range of 13 pixels. HoloADMM is trained using the Mean Squared Error (MSE) as
loss for 100 epochs with the Adam optimizer and a learning rate of 1e~*.

3.4 Results and Discussions

Results on synthetic as well as real in-line holographic data are presented in this
section along with quantitative and qualitative comparisons with other competing

approaches.

Literature reproduction The work of Wu et al. [Wu+21] has been reproduced us-
ing the Tensorflow implementation provided in https://github.com/THUHoloLab/
Dense-U-net. Huang et al. [Hua+23] phase-only "GedankenNet" has been repro-
duced using the author’s official implementation provided in https://github. com/
PORPHURA/GedankenNet and subsequently the work of Chen el at. [Che+22] has been
reproduced from the same code base. The network architecture used in Ren et al.
[RXL19] has been reproduced from the implementation details provided in their pa-
per. Similarly, the work of Rivenson et al. [Riv+18] has been reproduced using the
network implementation details provided in the paper and the supplementary ma-
terials. The work of Niknam et al. [NOL21] was reproduced from the official imple-
mentation provided in https://github.com/farhadnkm/DCOD. The authors of Chen
et al. [Che+23b] and Chen et al. [Xiw+24] kindly provided code implementation of
their two approaches used in this work.

3.4.1 Synthetic Holographic Data

HoloADMM and its competitors are trained exclusively on synthetic data, as de-
tailed in Section 3.3.4, and evaluated on both inner and outer synthetic test sets de-
noted as D; and D, respectively: the former comprises synthetic images generated
using the approach outlined in Section 3.3.4, while the latter contains a handful of
classic test targets taken from the Set14 dataset [HSA15] (the chosen image indices
are [1,2,9,10,12]). HoloADMM is trained using N = 10 holograms, yet it is able to
infer complex fields from an arbitrary number of input holograms, provided enough
memory. As demonstrated below, the proposed model consistently exhibits superior
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https://github.com/PORPHURA/GedankenNet
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Input base hologram Wau et al. Rivenson et al. Chen et al. HoloADMM Ground truth @

FIGURE 3.8: Reconstructed ® from some selected synthetic holographic samples
taken from ' D; and D, .

TABLE 3.2: Quantitative comparison results on on D; and D, synthetic test data
with spatial super-resolution.

Method SR factor RMSE| (x1073) PSNR?T SSIM 1
A (o] A (o] A (o]
p, D, D D, | D D, D; p, | b D, D D,
Ren et al. [RXL.19] <4 - - 23.76 7549 - - 16.531 14.159 - - 0.284 0.520
HoloADMM 246 132 459 194 | 26.544 29.313 23.764 27.626 | 0.806 0.827 0.769 0.791
HoloADMM X8 713 8.53 1235 14.94 | 21.910 22.938 19.442 20.794 | 0.554 0.663 0.488 0.598

reconstruction quality compared to the state-of-the-art, even when provided with
just a single hologram as input or when the input is heavily down-sampled. Quanti-
tative metrics reported in table 3.1 demonstrate HoloADMM'’s efficacy on both inner
and outer datasets, outperforming competing approaches by considerable margins
according to all reported metrics with an average PSNR improvement of over 4dB
on phase (®) images compared to the second best approach on D,. Performances
are also confirmed by figure 3.8 where visual inspection reveals HoloADMM'’s ca-
pability to preserve image details while effectively suppressing sensor noise, result-
ing in clean and sharp phase images in contrast to competing methods, note that
[Che+22] fails to suppress signal-dependent noise and [Wu+21; Riv+18] suffer from
blur artifacts. When considering also joint spatial super-resolution, HoloADMM is
trained using a decimated stack of holograms by a factor of x4 with an input shape
of 128 x128 pixels, yet it achieves superior phase image quality, as depicted in figure
3.10, compared to other competitors trained using high-resolution inputs (512x512
pixels). Table 3.2 quantitatively corroborates these results: HoloADMM reaches an
SSIM value of 0.791 with x4 down-sampled inputs, compared to 0.703 obtained by
[Riv+18] with full-resolution input holograms.

Additional qualitative comparison results on synthetic data can be seen in fig-
ure 3.9 where some sample reconstructions from HoloADMM as well as other ap-

proaches from the literature are shown on the inner test set with clear advantage in
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Renetal. HoloADMM

Input hologram Wau et al. Rivenson et al. Chen et al. Ground truth

No amplitude || No amplitude

No amplitude || No amplitude | *

No amplitude | No amplitude

FIGURE 3.9: Reconstructed amplitude and phase images from synthetic holo-
graphic data without spatial super-resolution.

terms of visual image quality of both predicted amplitude and phase distributions.
figure 3.11 shows some reconstruction results with an extreme super-resolution fac-
tor of x8 on synthetic holographic data data with an input shape of 64 x 64 pixels
and a target resolution of 512 x 512 pixels. Note that even with 64 fold decimated
data, HoloADMM is able to restore most of the scenes” details in this challenging
scenario.
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Input HR base hologram  Rivenson et al. (x 1) Chenetal. (x 1) Input LR base hologram Renetal. (x 4) HoloADMM (x 4)

No amplitude

rad
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 3.10: Reconstructions with x4 SR for HoloADMM and [RXL19] and x1
for [Che+22; Riv+18].

Input base hologram HoloADMM x 8 Ground truth

FIGURE 3.11: Reconstructed amplitude and phase images with a spatial super-
resolution factor x8.

Ren et al. [RXL19] also performs spatial super-resolution via sub-pixel convolu-
tions [Shi+16]. Quantitative as well as qualitative results in table 3.2 and figure 3.10
demonstrate that the proposed model produces sharper images, preserving high-
frequency details and outperforming [RXL19] for x4 super-resolution. Even with
an extreme factor of x8, HoloADMM is capable of yielding reasonable quantitative
results, reported in table 3.2, in contrast to [RXL19], which fails to generate mean-
ingful image data.
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TABLE 3.3: Quantitative results (PSNR) on some standard test targets. The table
compares the PSNR achieved by the proposed approach with other iterative meth-
ods. Computation times refer to an NVIDIA A6000 except for (*) that uses the CPU

only.
Method #holograms | Time (s) Airplane Barbara Baboon
A > A <) A <

Niknam et al. [NQL21] 1 529 21.019 11.020 | 16.127 14.261 | 17.425 13.583
Chen et al. [Che+23b] 1 990 18.297 17.4709 | 14.720 12.051 | 15.403 14.960
Chen et al. [Xiw+24] 1 797 17.188 18.012 | 20.047 17.179 | 15.504 14.744
SH-PR [Fie78] 1 60* 16.307 9.085 | 17.540 12937 | 14934 12.753
MH-PR [Fie78] 10 100* 19.465 11.295 | 19.900 19.565 | 20.596 18.567
HoloADMM x 1 1 0.29 29.178 24.828 | 25.261 23.959 | 23.800 21.454
HoloADMM x1 10 0.58 32.223 28.205 | 28.289 26.757 | 27.198 25.020

Ground truth HoloADMM (N = 10)  HoloADMM (N = 1) MH-PR (N = 10) Chen etal. Niknam et al.

00 02 04 06 08 10

FIGURE 3.12: Reconstruction results of A and ® on Baboon test target.

Additionally, results reported in table 3.3 and figure 3.12 compare the recon-
struction performance of HoloADMM, already trained on synthetic data, with other
model-based iterative methods on Airplane, Barbara, and Baboon test targets from
D,. For a fair comparison, results using single as well as 10 holograms as input are
reported; in both cases, the proposed approach outperforms iterative solvers and
effectively suppresses signal-dependent sensor noise, unlike Chen et al. [Che+23b;
Xiw+24], where the proposed algorithms tend to fit the noise model as the number of
iterations increases. Furthermore, HoloADMM preserves small spatial details, such
as the fine whiskers of the baboon in figure 3.12, while avoiding undesirable arti-
facts like those produced by [NQL21] in an attempt to suppress sensor noise which
results in an over-smoothed image. It is noteworthy that iterative approaches typi-
cally require a considerable amount of time to produce reasonable results (up to 15
min. for a 512x512 image in the approach of [Che+23b]), while HoloADMM, once
trained, can infer complex field distributions in under a second as reported in table
3.3.
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FIGURE 3.13: Beads and its hologram at 601 ym (A). Phase calibration target and
the captured hologram at 999 ym (B).

3.4.2 Real Holographic Data

DIHM Hardware Setup: The system prototype used in this work is depicted in
figure 3.1 (left): a narrow-band, wide-range tunable laser light source (a NKT Pho-
tonics SuperK laser) combined with a Laser Line Tunable Filter (LLTF) device is used
to emit coherent light in the visible range with a bandwidth of 1-2.5 nm. The illu-
mination is directed from the tip of a single-mode fiber, and a detector-filling light
cone is achieved by maintaining an illumination-to-object distance of over 200 mm.
The used detector is a CMOS sensor (Sony IMX219) with 1.12 um pixel size. To
ensure near-field conditions, where the Fresnel approximation is valid, the object-
detector distance is kept below 1 mm. Multi-height acquisition is performed by
moving the object in the axial direction using a piezo motor linear stage (CONEX-
SAG-LS548P) with a step size of 10 um, capturing a set of 10 holograms. Using a
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MH-PR (x 1) MH-PR (Bicubic T x 4) . HoloADMM (x 1) - « * HoloADMM (x 4)

FIGURE 3.14: Reconstructed ® from real beads holograms with x1 and x4 SR. Re-
sults from MH-PR are also shown with x4 resolution using bicubic up-sampling.
Input low resolution holograms are shown on the top right corners.

2D piezo motor linear stage, such as the CONEX-SAG-LS48P, it is possible to move
the object laterally and anteriorly/posteriorly to capture a series of sub-pixel shifted

holograms with a precision of one quarter of a pixel, i.e., 280 nm, enabling spatial

super-resolution capability.

Two different test target holograms where captured using the imaging prototype

as described above:

¢ Polystyrene beads, a photo of which is shown in figure 3.13a on the left, which

mimic real microscopic samples in both structural size and light transmission
properties. They have diameters ranging from 0.9 - 9 ym and are equipped
with carboxyl functional groups on their surface, allowing them to covalently
attach to the cover glass and form a monolayer structure. The cover glass slides
are attached to a sticky microchannel slide (IBIDI sticky-Slide I Luer) and the
channel is filled with a tailored liquid solution (Immersol). The sample is im-
aged using an illumination wavelength in the visible range, e.g., 638 nm, to
achieve ambiguity-free phase retrieval, prevent phase wrapping, and provide
suitable phase contrast, the captured hologram at 601 pym is shown in figure
3.13a on the left.

A phase calibration target “Phasefocus”, a photo of which is shown in figure
3.13b on the left, was used to calibrate the DIHM setup. This target is fabricated
through Reactive Ion Etching (RIE) of amorphous SiO2, which is patterned via
optical lithography, as described in [God+16]. The target includes both phase
and amplitude features, which can be imaged using the built DIHM proto-
type. The phase features are 600 nm deep trenches etched into transparent
amorphous SiO2, providing feature sizes that span a wide range of spatial fre-
quencies, from length scales of 2 ym to length scales of 600 ym. The focus of
the experiment is on the reconstruction performance of the smallest features,
such as GRP 9, which have a structure size of 2 - 10 ym and they are therefore

of interest for microscopic application.

All competing models listed in table 3.1 were trained solely on synthetic data
tested on the DIHM measurements. As anticipated, almost all models exhibits very
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LR base hologram Chenetal. (N =1) Niknam etal. (N = 1) MH-PR (N = 10) HoloADMM (N = 10)
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FIGURE 3.15: Reconstructed A and @ from a real phase calibration target. High-

lighted features are invisible in the bright-field domain but exhibit high phase con-

trast. Reconstructed 3D surfaces from @ of the etched lines are shown on the top
right corner of each zoomed-in region.

poor and sometimes meaningless reconstructions on real data, further highlighting
the challenge of model transferability beyond the training/synthetic domain. Qual-
itative results for those models are shown in figure 3.17. In contrast, HoloADMM is
able to produce high-quality reconstructions on different holographic samples for a
model trained on synthetic data only and without any form of explicit adaptation.
Notably, it not only produces meaningful results but also achieves higher spatial
resolution, up to x4 as shown in figure 3.14 reaching an effective pixel size of 280
nm, alongside results from the standard MH-PR algorithm. Figure 3.15 shows re-
constructed GRP 9 features from the phase calibration target, along with outputs
from other iterative approaches listed in table 3.3. HoloADMM reconstructs cleaner
and sharper phase and amplitude images suppressing noise and undesirable diffrac-
tion patterns, revealing fully transparent features with higher contrast and allowing
for better quality 3D surface reconstructions from the predicted ® compared to the
other competitors. figure 3.16 contains some sample reconstruction results on real
data. It shows the reconstructed complex fields from HoloADMM and competing
approaches. Notice that all approaches are trained on synthetic data and tested using
the real beads holographic data: while competing methods fail to produce accept-
able results and sometimes those results are meaningless, HoloADMM reconstructs
significantly better, cleaner, and sharper phase and amplitude images.

tigure 3.17 further demonstrates the reconstruction capability of HoloADMM: it
depicts three dimensional surface structures obtained from the phase shift estimated
from the GPR 9 features of the phase calibration target. The height map / is obtained

using the following formula:
AD

h—
21tAn
Where A = 638nm is the wavelength of the illumination laser, ® is the predicted

(3.13)

phase shift, An = nc, — ng;, is the refractive index difference between the phase
calibration target material and air. The actual depth of the etched lines is 600 nm.
HoloADMM produces well-defined three-dimensional structures, smooth textures
and consistent depth values close to the ground truth one compared to other iterative



82 Chapter 3. Holographic Phase Imaging

Input base hologram Wu et al. Renetal. Huang et al. Chen et al. Rivensonetal. HoloADMM

No Amplitude ‘ No Amplitude No Amplitude
; [FoT

<
@
=
2
=
£
<

L}

Amplitude A

No Amplitude
i Ii <l

FIGURE 3.16: Reconstructed amplitude and phase images from real beads holo-
grams: All approaches are trained solely on synthetic data. HoloADMM performs
x4 super-resolution (from 512 x512 to 2048 x 2048 pixels)
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methods that usually suffer from persistent diffraction artifacts and abrupt structure
changes.

3.4.3 Ablation Studies

Different ablation experiments have been conducted on a small subset of the train-
ing dataset. The increase in the number of ADMM steps, i.e., the number of un-
rolled blocks, leads to lower overall loss values, as shown in figure 3.18 (left), but
requires more computational resources; in this work the number of iterations is set
to n = 5. A naive approach that takes a hologram stack as input and predicts the la-
tent field falls short of achieving good performance, even on training data, as shown
in figure 3.18 (center), and is unable to generalize beyond that domain. Image reg-
istration is crucial for image super-resolution; without such a step, complementary
spatial information in the form of aliasing is not exploited, and the spatial quality of
the reconstructed images deteriorates, as shown in figure 3.18 (right). Further abla-
tion experiments have been conducted to highlight the model’s interpretability, the
choice of the prior network, of the loss function, and to assess the robustness to a
low number of input holograms and to the change of the refocusing distance.

Learned ADMM hyper-parameters: figure 3.19 shows the evolution of the learned
hyper-parameters « and p. The learning rate « starts by slightly increasing and then



3.4. Results and Discussions 83

HoloADMM (N = 10)

Depth (nm)

600

400

200

Niknametal. (N = 1)

Depth (nm)
500
450
400
350

300

MH-PR (N = 10)
Depth (nm)

500
400
300

200

Chenetal. (N =1)

Depth (nm)

600

400

200

FIGURE 3.17: 3D surface reconstruction of phase calibration target.
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FIGURE 3.18: Ablation experiments: (left) with different number of unrolled
ADMM steps, (center) with a straightforward approach, (right) without image reg-

istration.
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FIGURE 3.19: The evolution of the learning rate « used in Eq. 10 and the scaled
Lagrange multiplier p in Eq. 6.

decreases as the training progresses. This is expected and makes sense from an op-
timization point of view: at the start of the training the initial guess is usually sub-
optimal, thus the gradient descent steps need to have a higher learning rate to reach
a lower minima and to possibly avoid stagnation, as the training progresses the net-
work learns to reconstruct better images and the gradient descent step in this case
marginally improves upon the initial guess, so the learning rate has to be lower as
shown by the curve in figure 3.19 on the left. The Lagrange multiplier p is a penalty
term and it weights the constraint in Eq. 5 (v — x = 0). The curve shown in figure
3.19 on the right shows the learned initial value for p, note that the network grad-
ually opts for lower starting values for this parameter. Notice also that inside each
step, p starts from the value in the curve and is then increased following a given
schedule [CWE16] as the number of ADMM iterations increases (a linear increase
scheme is used by multiplying p by 1.1 at each ADMM iteration). In this way, at the
end of the optimization iterations the estimate x would be as close as possible to the

auxiliary variable v.

Prior architecture: Several architectures from the literature are tested as the prior
part of HoloADMM, namely a UNET [RFB15], a ResUNET [ZLW18], and a Re-
SUNET++ [Jha+19]. Quantitative results are reported in table 3.4. All three architec-
tures achieve competitive results with respect to other approaches from the literature
reported previously in table 3.1 given the fact that the input is down-sampled by a
factor x4. This performance indicates that information flow within HoloADMM
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FIGURE 3.20: Reconstruction quality with increased number of input holograms
(N).

leads to better reconstruction performance regardless of the prior architecture. No-
tice that priors with residual connections (ResUNET) and attention modules (Re-
sUNET++) outperform the simple UNET architecture. A larger model size also leads
to better quantitative results such as the case of ResUNET (13M) against UNET (8M)
and ResUNET++(6M). In this work a ResUNET architecture is used as the neural
prior because ResUNET++ is slower due to the attention modules that also impose
an upper-bound on the network size given the available GPU memory.

TABLE 3.4: Quantitative results on D; using different prior architectures with a
spatial super-resolution factor x4.

Prior Network Size (M) | RMSE] PSNR?T SSIM 1

‘ A @ | A D ‘ A @
UNET [RFB15] 8 433 7.85 | 24.008 21.350 | 0.719 0.670
ResUNET++ [Jha+19] 6 396 7.24 | 24386 21.685 | 0.741 0.693
ResUNET [ZLW18] 13 2.46 4.59 | 26.544 23.764 | 0.806 0.769

Loss functions: HoloADMM is trained using the Mean Absolute Error (MAE) and
Mean Squared Error (MSE) loss functions and also a combination of MSE and per-
ceptual loss (VGG loss) [MTZM18]. Quantitative results are reported in table 3.5.
The model performs well with the MSE loss function while MAE introduces high
frequency artifacts and leads to overall lower quantitative metrics, the combination
of MSE and a perceptual loss function does not lead to any noticeable improvement
as well.

TABLE 3.5: Quantitative results on D; using different loss functions with a spatial
super-resolution factor x4.

Loss Function RMSE| PSNRt SSIMTt

A o ‘ A D ‘ A o
MAE 3.65 627 |24756 22.029 | 0.755 0.711
MSE+VGG 355 648 | 24.859 22177 | 0.760 0.716
MSE 246 4.59 | 26.544 23.764 | 0.806 0.769

Robustness: HoloADMM is designed to work best with a stack (N > 1) of in-
put holograms which enable multi-frame image super-resolution via alignment and

registration. Yet, with a single hologram as input, the model is still able to produce
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Hologram Amplitude A Phase @

FIGURE 3.21: Reconstructed phase and amplitude distributions from a single in-
put hologram of real samples from [Che+23b] captured with an extended object-
detector distance of 5.5 mm.

acceptable results on real data as shown in figure 3.20. Compared to other model-
based snapshot solvers shown previously in figure 3.15, it is also possible to see that
with larger number of input holograms, results get better and undesirable diffrac-
tion artifacts are gradually suppressed.

figure 3.21 shows the reconstructed phase and amplitude images using real sam-
ples from [Che+23b] captured at a distance of 5.5 mm from the sensor well beyond
the refocusing range used to train HoloADMM (0.5 mm to 1 mm). The proposed
model is able to reconstruct both amplitude and high contrast phase images from a
single input hologram with a very large refocusing distance. Artifacts in the recon-
structed images are mainly due to the lack of input information in this case where
N=1.

Furthermore, it is interesting to quantify model robustness to inaccuracies in the
refocus distance estimation during inference: although the piezo actuators are very
accurate (£25nm), issues may arise from the estimation algorithm (where gradient
sparsity is used as a refocus metric). figure 3.22 shows the model accuracy (i.e.,
the PSNR of the reconstructed phase) with a fairly high z value deviation starting
from 26z = +20um: the model preserves a good PSNR across all perturbations.
Note no large deviation in the distance estimation across different sample types were
observed.

3.5 Concluding Remarks

In this second part of the thesis HoloADMM is introduced, an approach that
combines interpretability of model-based solvers and the large learning capacity of
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30+

FIGURE 3.22: Reconstruction quality in terms of PSNR with inaccurate estimates
of the refocusing distance.

deep neural networks. It is demonstrated that by leveraging large-scale synthetic
datasets, high-quality phase imaging capability can be achieved. Additionally, the
proposed approach exhibits strong generalization abilities, seamlessly extending to
real captured holographic data with notable accuracy. This not only highlights the
promise of this methodology but also suggests its potential for practical applications
across diverse domains, from biomedical imaging to materials science and beyond.
Nonetheless, there are other avenues for potential investigation, such as joint
computational refocusing. This is a natural extension of this work and will be

further investigated.

Model Limitations HoloADMM relies on an accurate estimation of the refocusing
distance, since significant deviations in the measurements can result in sub-optimal
reconstructions with real data. Moreover, the complete absence of amplitude infor-
mation across the entire scene can impact the registration module and subsequently
affect the spatial quality of the reconstruction. Lastly, there are instances where the
model excessively enhances image contrast in areas where it shouldn’t, leading to
erroneous phase shift values in those regions. This phenomenon occurs due to the
presence of stray light, which provides misleading information for the network that
inadvertently amplify its effect in the reconstructed phase image. One could address
the above limitations by: 1) Introducing iterative refinement steps that gradually
adjust the refocusing distance based on feedback from the reconstruction quality
metrics. 2) Use complex edge magnitude to evaluate focus maps. 3) Incorporate a
stray light correction module that pre-processes the holographic data to remove or
mitigate the effects of stray light.
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Chapter 4

Conclusions

4.1 Summary of Findings

Forward steps in the field of computational image sensing have been made by this
work, particularly in the areas of spectral imaging and holographic phase imaging.
The primary focus was on developing techniques that address the inherent chal-
lenges in these advanced imaging methods, particularly the inverse problems that
arise during image reconstruction.

The research presented in this thesis dealt with computational reconstruction
approaches for spectral imaging and phase imaging where learning-based solution
have been proposed to tackle the ill-posed inverse nature of the reconstruction prob-
lems in the two cases. HSRN and its subsequent variant HSRN+ have been pro-
posed for joint spectral image recovery and spatial super-resolution from CTIS and
MACTIS measurements with extensive studies on synthetic as well as real data cap-
tured using three different spectrometer prototypes. For the phase imaging problem
HoloADMM, a deep unrolled architecture, has been proposed. It surpasses current
state-of-the-art in terms of image quality and its capability to transfer to new unseen
domains. Extensive investigations have been carried out to validate the model per-
formance on synthetic as well as real holographic data captured by a custom-made
DIHM prototype.

In a nutshell, the key findings of this research are:

* Enhanced Spectral Imaging: The proposed methods allowed to successfully
improved the resolution and accuracy of spectral images, allowing for more

detailed analysis of material properties.

* Improved Phase Imaging: The advancements in holographic phase imaging
have enabled more accurate reconstruction of phase information, which is crit-

ical for applications in medical imaging and material science.

* Robust Computational Techniques: The integration of computational algo-
rithms with imaging techniques has proven effective in solving inverse prob-

lems, leading to more reliable and accurate imaging results.
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4.2 Practical Implications

The techniques developed in this thesis have some practical implications as dis-
cussed before. However, further applications can benefit from such approaches.
In medical imaging, the enhanced spectral and phase imaging methods can lead
to better diagnostic tools, enabling more precise detection and characterization of
diseases. In material science, these techniques provide deeper insights into the
structural and compositional properties of materials, which can drive innovations
in manufacturing and quality control.

Furthermore, the computational methods introduced in this thesis are not limited
to the specific applications discussed. They can be adapted and extended to other
imaging modalities, broadening their impact across various fields of engineering
and science.

4.3 Future Research Directions

While this thesis has addressed several key challenges in imaging science, there re-
main numerous opportunities for further research. Some potential directions for
future work include:

* Domain Adaptation: In order to bridge the ever increasing gap between syn-
thetic and real acquisition settings, domain adaptation techniques are needed
in order to enhance model performance on unseen real world data while ex-
ploiting the availability of synthetic data in the training phase. Such techniques
should be further investigated.

¢ Extension of Imaging Techniques to New Modalities: Exploring the applica-
tion of the developed methods to other imaging modalities, such as X-ray or
ultrasound imaging.

¢ Real-Time Imaging and Reconstruction: Developing algorithms that can
achieve real-time imaging and reconstruction, which would be highly
beneficial for dynamic studies in both medical and industrial applications.

¢ Physics based Learning Integration: Incorporating physical models to further
enhance image reconstruction accuracy and constrain the possible solution

space, particularly in solving complex inverse problems.

¢ Optimization for Hardware Implementation: Adapting the proposed methods
for efficient implementation on hardware of mobile platforms, making them

more accessible for real-world applications.
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4.4 Final Remarks

This thesis has contributed to the advancement of computational imaging by de-
veloping innovative techniques for spectral and holographic phase imaging. These
contributions not only enhance our understanding and capabilities in these specific
areas but also lay the groundwork for future advancements in the broader field of
image based sensing. The ongoing evolution of imaging technology promises to
continue transforming our ability to observe and understand the world, and this

thesis is a small step forward in that journey.
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